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Abstract based variant.
We define a translation from predicate-based ontologies
Many popular ontology languages are based on (subsetsto F-Logic. We show that when considering sorted F-Logic,
of) first-order predicate logic, where classes are modeled a the translation preserves entailment for arbitrary firsteo
unary predicates and properties as binary predicates, suchtheories. We then show that this is not the case in general
as Description Logics. Specifically, the ontology language when translating the ontology to an unsorted F-Logic lan-
OWL DL is based on the Description LogkHOZ Q. F- guage, but for certain classes of first-order formulasedall
Logic is a different ontology language which is also based the cardinal formulas, the entailments are equivalent. Our
on first-order logic, but classes and properties are repre- translation preserves function-freeness, i.e., if no fignc
sented as terms, rather than predicates. In this paper wesymbol of arity> 0 was used in the original ontology, no
define a translation from predicate-based ontologies to F- function symbol of arity> 0 will occur in the translated
Logic ontologies and show that this translation preserves ontology.
entailments for large classes of ontologies, includingtmos ~ We show that the translation to unsorted F-Logic pre-
of OWL DL. We define the class &fsafe formulas, show serves validity for large classes of predicate-based lan-
that the Description LogiSHZ Q is £-safe, and show that  guages. We define the class&fafe formulas, show that
the translation preserves validity ¢F-safe formulas. We  the Description LogicSHZQ is £-safe, and show tha-
then use these results to close the open problems of layersafe formulas are cardinal. Finallg-safe formulas are
ing F-Logic programming on top of Description Logic Pro-  closed under negation, and thus entailmen€ afafe for-
grams and language layering in WSML. mulas can be reduced to checking validity.
Our definition of cardinal formulas originates from
HiLog [[7], and thus the class of cardinal formulas we de-
1 Introduction sgribe in this paper, thé-safe formulas, can be used for
HiLog as well.
_ . We use these results to close the open problem of F-
Therg have been several proposals for using F-L_oglc aSLogic extensions of Description Logic Programsi[14] and
the basis for an ontology language for the Serr_1ant|c Webthe problem of language layering in WSML (and thus also
[17,110,[2]8]. In F-Logic, classes and properties are in- \yg) y e show that the WSML variants are indeed seman-
terpreted as objects. This may hamper inter-operation Withtically layered as suggested [N ]10]. Specifically, we show

Description Logic-based ontology languages (€.g. OWL DL y,5; the janguage layering preserves (ground) entailment
[12]), in which classes and properties are interpreted as

unary and binary predicates. We will call the way of mod-
eling ontologies in F-Logic “frame-based ontology mod- Structure of the paper In Sectiorl2 we review predicate-
eling” and the way of modeling ontologies in Description and frame-based ontology modeling languages. In Section
Logics “predicate-based ontology modeling”. B, We show that the translation of any predicate-based on-
More specifically, SWSLL6], WRL2] and WSMILL]10] tology to sorted F-Logic is faithful and that the translatio
claim that an F-Logic based variant of the language (WRL- of cardinal formulas to unsorted F-Logic is faithful; we
resp. WSML-Flight) is an extension of a Description Logic identify the class oE-safe formulas and demonstrate car-
(Programming) based variant of the language (WRL- resp.dinality. We use this translation to show that the straight-
WSML-Core). It is an open problem whether the F-Logic forward F-Logic extension of DLP preserves ground entail-
based variants are really extensions of the Descriptiond_og ment, in Sectiof4. We then use the translation to show



that the WSML language variant are layered, in Sedtlon 5.
Finally, we review related work in Sectidd 6 and present
conclusions in Sectidg 7.

2 Preliminaries

Predicate-based ontology modeling A predicate-based
ontology language is a first-order language in which unary
predicates represent classes of objects and binary pred
cates represent properties (relations between objects). D
scription Logicsl[8] are such predicate-based ontology lan
guages. Of special interestd&HOZQ, which is the lan-
guage underlying OWL DL. We present the syntax and se-
mantics ofSHOZQ through a mapping to first-order logic
with equality. The descriptions are presented in Téble 1;
the axioms are presented in Table 2. In the tabless

a named clasg;, D are descriptionsg), R are roles, and
a,b, o1, ..., 0, are individuals. Additionally, we have that in
thenumber restrictions: nR.C and< nR.C, R have to be
simple i.e., R and its subroles may not be transitive (with
transitivity indicated byTrans(R))

The Description LogicSHZ Q corresponds t6 HOZQ
without the enumeration {¢i,...,0,}) and hasvalue
(3R.{0}) descriptions. In the remainder of the paper, when
referring toSHOZQ (respSHZ Q) axioms, we refer to the
FOL version of these axioms.

DL syntax FOL syntax

(A, X) A(X)

wy (T, X) X=X

my (L, X) ~(X = X)

7ry(C1|_\...V_|Cn,X) Awy(Ci,X)

my(C1U...UCh, X) | Vmy(Ci, X)

wy(~C, X) -7y (C, X)

my({o1...0n}, X) VX=o

my(IR.C, X) Iy(R(X, y) A7m=(C,y))

my(VR.C, X) Vy(R(X,y) D 7z(C,y))

my(3R.{o}, X) RE(X7 0) R0
Y1s---5Yn  Yi)A\

7ry(> nR.C,X) V/\ 7Tw(07 yi) /\(//\\};‘EJ)Z(: y)J)
Y1;-- -y Yn+1 7yi/\

Ty (< nR.C, X) A7e(Coyi) DV yi = ;)

m is defined asry by substitutingr andz; for all y andy;, re-
spectively

Table 1. SHOZQ Descriptions

We distinguish between concept (unary predicate) and
role (binary predicate) symbols, and predicate symbols of
other arities, in the signature of the language. A first-orde
signatureX has the formX = (A,C, R, P), where A is
the set of function symbols, each with an associated arity
C is a set of concept (unary predicate) symb®sis a set
of role (binary predicate) symbols, afitlis a set ofn-ary
predicate symbols, with = 0Oorn > 3. A,C,R, andP
are disjoint.

DL syntax | FOL syntax
Class Axioms
CLCD Va(my(C,z) D 7y (D, x))
C=D Va(ny(C,z) D my(D, z)) ANVa(ry (D, z) D my(C, z))
Property Axioms
QCR vz, y(Q(z,y) D R(z,y))
R=Q~ | Vz,y(R(z,y) D Qy,z)) AVz,y(Q(y, z) D R(z,y))
Trans(R) | Vz,y, z(R(z,y) A R(y, z) D R(z, z))
Individual Axioms
ac A A(a)
(a,b) € R | R(a,b)
fFa=0 a=>b
a#b —(a=0b)

Table 2. SHOZQ Axioms

Given a signature: and a set of variable symbolg,
terms are either variables or constructed terms of the form
ft1, ..., tn) with f € A ann-ary function symbol«{ > 0)
andty, ..., t, terms. Atomic formulas are expressions of
the formp(t4, ..., t,) with p € C U R U P ann-ary pred-
icate symbol ¢ > 0) andt4,...,t, terms. Formulas of
a first-order languag€” are constructed as usual: every
atomic formula is a formula i£”; compound formulas are
constructed using atomic formulas, the logical connestive
-, A\, V, D, the quantifiersd,V and the auxiliary symbols
(.
An interpretationfor a languageC” is a tupleZ =
(A, -T), whereA is a nonempty set (calledbmair) and-*
is a mapping which assigns: a functigh : A™ — Ato ev-
ery n-ary function symbolf € A, and a relatiop? C A",
to everyn-ary predicate symbgl € CUR U P.

A variable assignmen®B is a mapping which assigns an
elementz® € A to every variable symbaot. A variable
assignmenf3’ is anz-variant of B if yB = y5' for every
variabley € V fory # «.

Given an interpretatiof = (A, ), a variable assign-
ment B, and a term: of £F, t7-B is defined asz?? =
2B for variable symbok: and %8 = fZ(t1P . L.B)
for ¢ of the form f (¢4, ...,¢,). Z satisfiesan atomic for-
mulap(ty, ..., t,), given a variable assignment, denoted
T,B = p(ty, . tn), if (077, t2B) e p? . I,B =t =
ty iff t7°7 = ¢2'7. This is extended to arbitrary formulas as
usual:Z, B = ¢1 Ao (respZ, B = ¢1 Voo, I, B |E —¢1)
iff Z, B ¢ andZ, B = ¢o (resp.Z,B = ¢1 orZ,B =
¢2, L, B¥ ¢1); Z,B = Va(¢1) (respZ, B | Jx(¢q)) iff
for every (resp. for somep’ which is anz-variant of B,
I,B" = ¢1.

An interpretatiorZ is amodelof ¢, denotedZ E ¢, if
Z,B E ¢ for all variable assignmentB; ¢ is satisfiable
if it has a model (unsatisfiable otherwise)js valid if ev-
ery interpretatior? is a model of¢. These definitions are
straightforwardly extended to the case of first-order thesor
o C P,

)
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A theory® C LF entailsa formulag¢ € £F, denoted Variable assignments are as in first-order logic.

® = ¢, iff for all interpretationsZ in £7 such thatZ = @, Given an interpretatioi, a variable assignme®, and

T = ¢. atermt of £, t1.8 is defined asz™? = 2P for variable
symbolz andt™? = 1 (f)(t77, ..., tLB) for ¢ of the form

Frame-based ontology modeling Frame Logic[17[ 18]  f(t1, .- tn).

(F-Logic) is an extension of first-order logic which adds  Satisfactionof ¢ in I, given the variable assignmen

explicit support for object-oriented modeling. It is pos- denotedl, B =¢ ¢, is defined as: (aJ, B |=f p(t1, ..., tn)

sible to explicitly specify methods, as well as generaliza- iff (77, tkP) € Ip(p), (b) LBty : tp iff

tion/specialization and instantiation relationshipse Byn-  ¢1'” ey 57, () LBEct1 = to iff 77 <y 37,

tax of F-Logic has some seemingly higher-order features, (d) I, B |= t1[to—-ts5] iff 1_., (t;B)(t}B) is defined and

namely, the same identifier can be used for. a class, an in—tng e I_.(t2P%)(tMP), and (e)I, B ¢ t1 = t, iff 2P =

stance, and a method. However, the semantics of F-LogiCisL. 2 gytension to satisfaction of compound formulas is as

strictly first-order. To simplify matters, we do not conside  first-order logic.

parametrized methods, functional (single-valued) meshod The notions of a model and of validity are defined anal-

inheritable methods, and compound molecules. ogous to first-order logic. A theor C LF F-entailsa

The signature of an F-Logic languagé is of the form  formula¢ € £F, denotedd ¢ ¢, iff for all F-structuresl
¥ = (F,P) with F a set of function symbols afda set of ~ such thafl = @, I |=f ¢.
predicate symbols, each with an associated arity 0. Let
V be a set of variable symbols. Terms and atomic formulas  Sorted F-Logic In predicate-based ontology model-
are constructed as in first-order |Ogiﬁ:€ Vis a term and ing' the sets of Symbo|s used for ConceptS, roles and indi-
f(t1, ..., tn) isaterm, withf € F ann-ary functionsymbol  viduals are disjoint. This is not the case in F-Logic. This

andti, ..., t,, terms. disjointness can be regained by usingpatedF-Logic lan-

A molecule in F-Logic is one of the following state- guage.
ments: (i) anis-a assertion of the formC’ : D, (ii) a We consider a sorted F-Logic language with three sorts:
subclass-ofassertion of the fornC' :: D, or (iii) a data  jndividuals, concepts and roles. A sorted F-Logic language

molecule of the formC[D—E]. with C, D, E terms. AN has a sorted signatute = (A,C, R, P), whereA is the

F-Logic molecule iggroundif it does not contain \_/arlables. set of function symbol< is a set of concept (nullary func-
Formulas of an F-language” are either atomic formu-  tion) symbolsR is a set of role (nullary function) symbols,

las, molecules, or compound formula which are constructedgnd P is a set ofn-ary predicate symbols, with > 0.

in the usual way from atomic formulas, molecules, and the 4 ¢, R, andP are disjoint. The usual restrictions to the

logical connectives-, A, V, O, the quantifiers], v and the  yse of symbols in formulas applies, namely only molecules

auxiliary symbols), (. We denote universal closure with  of the forma : c,c : d, a[r—-b] are allowed, witha, b

. terms constructed from symbolsit V, ¢,d € C UV, and

F-Logic Horn formulas are of the forv) B1 A...AB,, r € R UV. Quantifiers need to be qualified withe, r to

H, with By, ..., By, H atomic formulas or molecules. F- indicate over which domain (individual, concept, role) the
Logic Datalog formulas are F-Logic Horn formulas without  yariable quantifies.

function symbols and where every variablefhoccurs in A sorted F-structure has three disjoint domains:

By, ..., Bn. U;,U., U, for the individuals, concepts, and roles, respec-
Interpretations in F-Logic are callé@structures AnF-  tively; <u is an irreflexive partial order over.; €y is a

structureis a tupleI = (U, <y, €y, I, Ip,1.). Here, relation petweeM an(_ch: cy: U; x U.. I}? interprets

<y is an irreflexive partial order on the domdihande symbols inA as functions ovet/;, symbols inC as ele-

is a binary relation ovel/. We writea <;; b whena < b ments inU,., and symbols oRR as elements itv,.. Ip inter-

ora = b, fora,b € U. For each F-structure holds that if Prets symbols irP asn-ary relations ovet/?". Finally,I..
a €y bandb <y cthena €y c. Thus, ifb <y ¢, then associates a partial mappibg — P(U;) to each element
{k|keybkeUYC{k|keyckelU). of U,.

An n-ary function symbolf € F' is interpreted as a

function over the domai/: Ir(f) : U" — U. An 3 Translating Predicate-Based Ontologies to
n-ary predicate symbop € P is interpreted as a rela- F-Logic
tion over the domairU: Ip(ﬁ C U™. 1., associates

? pgrgaﬂngtgﬂ;)(;) P(UM with each element ot: Table[3 defines a mapping from the predicate style of
- ' ontology modeling to the frame style. In the table,B are
P (U) denotes the powerset bf. unary predicate symbols;, D are formulasR is a binary




Entity Predicate style | Frame style
Class 0(A(X)) X:A
Property value| 6(R(X,Y)) X[R—-Y]
Equality (X =Y) X=Y

n-ary relation | §(P(X)) P(X)
Universal o(Vz.C) VZ.6(C)
Existential 6(32.C) 37.6(C)
Conjunction | §(C' A D) (6(C)N6(D))
Disjunction 46(C Vv D) (6(C) Vv (D))
Implication 0(C D D) (6(C) D 4(D))
Negation 0(=C) =(6(C))

Table 3. Translating predicate-based to
frame-based modeling

predicate symbolP is ann-ary relation symbol, withh = 0
orn > 3, x,y,z are variable symbols;, b are constant
symbols, andX, Y are terms. The mappings extended to
sets of formulas in the usual way.

Definition 1 (Translating formulas) Given a predicate-
based ontology languagé” with the signatureX,» =
(A,C,R,P). LetL" be the corresponding F-Logic lan-
guage which has the signatuke.» = (F,P), with F =
AUCUTR.

Given a set of first-order formulak C L7, thend(®) C
LT is thecorresponding seif F-Logic formulas, with§ as
in Table[3.

In the remainder of this section, we will first show that
the translation in DefinitioBl1 is faithful (i.e., presenas

Sketch.From any interpretatio of £ such thatZ | ¢
one can easily construct a corresponding sorted F-steictur
I such thafl |=f §(¢), and vice versa.

([l

Theorem 1. Let® C L be a set of formulas in the lan-
guageL”, §(®) C L be the corresponding F-Logic for-
mulas in a sorted’?’, and let¢ € £ be an arbitrary for-
mula, then:

B = ¢ iff 5(®) ¢ 6(0)

Proof. Follows immediately from LemmBl 1 and the fact
that checking entailmendt = ¢ can be reduced to checking
unsatisfiability of(A\ @) A —¢. O
3.2 Translating Cardinal Formulas

We now consider the translation functiémof Table[3 in
its original form and we consider unsorted F-structures of
the formI = (U, <y, €y, Ir,Ip,1,).

It turns out that we lose the correspondence of models in

the general case with this augmented definition. Consider,
for example, the following formula:

¢ = (Vo,y.x =y) D (¢(a) = r(a))

The formulag is trivially satisfied in any interpretation
with more than one element in the domain, since the an-
tecedent will be trivially false in such an interpretatidh.
we consider an interpretation with only one element, then
the antecedent is true, but the consequent is not necgssaril

tailment) when considering a sorted F-Logic language. We true, because andr may be interpreted differently. Thus,

will then show that for a certain class of formulas, the class &

of cardinal formulas, the translation is also faithful when

is not valid in FOL. Now consider the corresponding F-
Logic formula:

considering an unsorted language. Besides the classes of

cardinal formulas identified iri.[7], we identify the class of
&-safe formulas, show that reasoningSf#Z Q can be re-
duced to validity of¢-safe formulas, and show thétsafe
formulas are cardinal.

3.1 Translating to Sorted F-Logic

() = (Va,yx=y)D(a:q—a:r)

As we have seen, the original formufais not valid in
LP. However,§(¢) is valid in £, sinceq andr must be
interpreted as the same class in every F-structure which has
exactly one element.

From the example we can see that the translatidoes

We first investigate a translation to sorted F-Logic. We not work for arbitrary predicate-based ontology languages
augment the translation in Talffe 3 to ensure that variablesThere is, however, a class of formulas for which the corre-

are only quantified over the domain of individuals, by
replacing each universal quantifi¢in Table[3 withv; and
each existential quantifierwith 3;.

We now show equi-satisfiability of formulas ", and
their F-Logic counterparts:

Lemma 1. Let ¢ be formula in£” and let£” be the cor-
responding sorted F-Logic language, thers satisfied in
some interpretation of ©* if and only if5(¢) is satisfied in
some sorted F-structure aff.

spondence does hold with the augmented definition. This is
the class otardinalformula as defined iri]7].

Definition 2. Let® C £” be a set of formulas i”, let
~ denote the number of symbols4f’, then® is cardinal
with respect toZ” if the following holds:

If & is true in every interpretatioff such that the
cardinality of the domain of is at leasty, then
& is true in every interpretation of .



An interpretationZ = (A, -%) is cardinal if | A] > ~.

With a little abuse of notation we will also writg| for
|A|in the remainder.

Note that this condition does not hold for the formula
¢ mentioned above, becausges true in every interpreta-
tion with a domain of at least 3 elements, but it is not true
in every interpretation of2”. The following definition of
cardinality is equivalent to Definitidd 2:

Corollary 1. Let¢ be a formula inc?, theng is cardinal
with respect toC” if and only if:

If ¢ is true in an interpretation oZ”, then¢ is
true in an interpretation that is cardinal fof”.

Proof. Assumeg is true in some interpretatiofi of £7,
i.e.,Z = ¢. The latter is equivalent td [~ —¢, thus, by
contraposition of Definitioll]l2, there is an interpretatiin
which is cardinal forC such thatZ’ [~ —¢. The latter is
equivalenttaZ’ |= ¢. O

(2) AssumeZ = ¢ for some interpretatio@ and car-
dinal formulag¢. By Corollary[d, we have that there is a
cardinal modef’ of ¢.

AssumeZ’, B = ¢ for some variable assignmei.
SinceZ’ is cardinal,I = (Z')'" is defined. To prove the
lemma, it is sufficient to show thdt B |=¢ §(¢) (we may
use the same variable assignment, becdlse A). We
proceed by induction over the length of the formala

Considergp = C(X). 7/,B ¢ iff tZ°B ¢ CT' iff
tIB ey 1x(C). The ‘only if’ direction follows from (v)
in the translation above. The ‘if’ direction follows from
the fact thatlx(C) # k foranyk = Ip(D), with D #

C a concept identifier. Similar for formulas of the form
R(X,Y).

Considerp = (t1 = t2). T/, B | ¢ iff tf,’B = tf,’B
iff 177 = 7%, The last ‘iff’ follows trivially from the
construction off.

Considerp = Vz (). ', B |= ¢ iff for every z-variant
B'of B,T',B' = ¢ iff I, B’ = 6(¢). The last ‘iff’ follows
by induction and from the observation that the domains of

We can now strengthen Lemriia 1 and Theolém 1 to theZ andI are the same. Similar faf = 3x(¢). This can be

case of unsorted F-Logic:
Lemma 2. Let¢ be a formula inZ”. Then

1. if §(¢) is satisfied in some F-structure @f", then
there is an interpretation of” which satisfies), and

2. if¢is cardinal and is satisfied in some interpretation of
LF, then there is an F-structure af¥" which satisfies

6(¢)-

Proof. Given a cardinal interpretatich = (A, -%) of L7,
thenl = (2)"'t = (U, =y, €y, Ir,Ip,1_..) is the corre-
sponding F-Logic structure, which is obtained as follows:
(U = A, (i) V f € A Ip(f) = fZ, (i) Ve e C:
Ir(c) = k. for somek. € U, (V) Vr € R: Ip(r) = k,
for somek, € U, (V) V ¢ € C and every individuak € A,
if k € ¢ thenk €y Ip(c), (Vi) Ver,c0 € Crif F C &
thenIp(c1) <u Ip(ce), (Vi) Vr € RandV ki, ke € A,
if (ki,k2) € rZ thenky € I, (Ip(r))(k1), and (viii) V
p € P: Ip(p) = p*. All k. andk, must be mutually dis-
joint. SinceZ is cardinal, obviously there is such &n

Given an F-structuré = (U, <y, €y, Ir,Ip,1_,) for
the languag&’’, the corresponding FOL interpretatin=
(DFOL = (A, -T) for LT is defined as follows: (iN = U,
(i) VfeA fL=1p(f), (ii)Vcel:  ={k|key
Ir(c)istruefork € U}, (V) Vr € R: T = {(k1, ko) |
ko € I_.(Ip(r))(k1),forks, ke € U}, and (V)Vp € P:
p? = 1p(p). Obviously, there is such a@h

We now proceed to prove the lemma:
(1) Assumel ¢ 6(¢) for some F-structurg, then it is
easy to verify thaf = ¢.

trivially extended to formulas of the formsy, 1 A, and
1 V 4. O

Theorem 2. Let® C £F be a set of formulas ang € £F
be a formula, then:

if ® = ¢ thend(®) =f 6(¢p)
If =(A\ @) V ¢ is cardinal, we have additionally:

D k= ¢ if 5(®) |1 6(0)

Proof. Follows from Lemmd2 and the observation that
checking entailment can be reduced to checking validity of

(A ®)V ¢. O

Results on cardinal formulas for HiLog can be trans-
ferred to F-Logic. Fronm][7] we know that equality-free sen-
tences, as well as negation of Horn clauses with no equality
in the antecedent are cardinal. This is, however, not suffi-
cient for many ontology languages which allow the asser-
tion of equality between individuals and maximal number
restrictions, such as the Description Logi¢(Z O.

We define the class of-safe formulas { stands for
“equality”) which allow only safeuses of equality. With
“safe” we mean that the use of the equality does not restrict
the size of the domains of the models. The structuré-of
safe formulas is similar to the structure giiardedformu-
las [1]. For&-safe formulas, the guard ensures that equality
statements range only over part of the domain.

We first define the class difnited £-safe formulas, de-
notediESF:



IESF = A|-A|p1 AN d1V oo |

VE(x 2 ¢) | IT(x A ¢)

whereA is an atomic formula either of the forp(Z) or
t1 = to with ¢4, t5 either both ground or non-ground terms;
o, P1, P2 arelE-safe formulas, ang is either an atom of the
form p() or a conjunction of atoms of the forp(Z) such
that every atom iny with free variables shares at least one
variable with another atdfn Finally, every free variable in
¢ must be appear ify. We now define the class éFsafe
formulas, denotedSF:

ESF = ¢ |Vx(9) | 2(9) [ 1 A2 [ Y1V o

With 11, 1o E-safe formulasy, ¢ [£-safe formulas, and
x the only free variable ip. As usual, ar€-safe sentence
is an&-safe formula without free variables.

We consider formulas of the formv&(z = « > ¢) and
Jz(z = = A ¢), with ¢ ani&-safe formula with one free
variablez, £-safe, because they are equivalentide) and
Jz(¢), respectively. As is usual in guarded logics, we thus
assume that formulage(¢), 3z(¢) are guarded by = x.

Notice that the negation of af+safe formula is£-safe
as well.

Example 1. The following formulas aré-safe:
Va.(p(z) O q(x))
Va.(s(z,y) D p(x))
Az, y.plx) Ar(z,y) N =y

Va.r(z)
The following formulas are nd-safe:
Ve,yx =y

Ve.a(x) Naly) Dx =y
Voo =y D p(z,y)

Many expressive Description Logic languages &re
safe, includingSHZ Q:

Proposition 1. Any (negation of apHZ Q axiom¢ can be
rewritten to an&-safe formulag’ such thaty and ¢’ are
equivalent, i.e., share the same models.

Proof. Assumey is the first-order version &HZ Q axiom
(translation ofSHZ Q axioms to FOL formulas can be done
according to TablEl2). In casgis a property or individual
axiom, it is trivially £-safe andy’
Say, ¢ is a class axiom of the form = Va (¢ D ¢o).

Given the form ofp and the translation in Tablé 2, one can
transform¢; O ¢y to a conjunctiony of [£-safe formu-
las, e.g., removing disjunction from the antecedent induce

2The atoms must form a “chain”, where the shared variablegtare
links in the chain.

a splitting of the original formulain a conjunction of formu
las, such thap’ = Vz+) is an&-safe formula that is equiva-
lent to ¢.

As the negation of a#-safe formula is again afi-safe
formula we have that the negation 068&{Z Q axiom is&-
safe as well. O

Note thatSHOZQ formulas are no€-safe in general,
because of the possibility of using nominals. Consider, for
example, theSHOZQ knowledge bas¢ T T {a}}. This
is equivalent to the first-order senterte(z = a). Every
model of this knowledge base has exactly one element in
its domain. This generalizes to any Description Logic with
unrestricted use of nominals.

&-safe formulas are a highly expressive class of formu-
las. In fact, it is easy to see, using a modification of Propo-
sition[, thatSHZ Q knowledge bases extended with Horn
formulas can be equivalently translated to seiS-safe for-
mulas. As entailment in the former is undecidable in gen-
eral [19], entailment oE-safe formulas is undecidable in
general, as well.

We now formulate our main result with respect to cardi-
nal formulas:

Lemma 3. The following classes of formulas first-order
formulas are cardinal:

1. Sets of equality-free sentences,

2. formulas of the formxS, whereS is a conjunction of
Horn clauses without equality in the head,

3. the class of-safe sentences.

Proof. Cardinality of the first and second class is shown
in [[Z]. We proceed with the proof of cardinality ¢tsafe
formulas.

There are five types &f-safe sentences: (1JSF sen-
tences, (2) universal and (3) existeniabafe sentences and
(4) conjunctions and (5) disjunctions éfsafe sentences.
Any [ESF sentence can be equivalently written as a uni-
versal sentencéx(¢). We now proceed to prove cardinality
of sentences of the forms (2,3,4,5).

We need the following auxiliary notion. Given an in-
terpretationZ = (A,-), k € A is unusedin Z if: (a)

k does not occur in the domain or the range of a function
ff: A" — Afor f € A, and (b)k does not occur in a
relationp” : A” forp € CUR U P.

(2) We proceed by induction. Assunig” | Va(¢) for
every cardinal interpretatiod=?. We will show that if
It = Va(¢) for every interpretatio**! of cardinality
i+ 1, thenZ® |= ¢ for every interpretatiod of cardinal-
ity 4, with 4 > 1. By induction, this guarantees that every
interpretation is a model ofz(¢), and thus the formula is
cardinal. LetZ’ be an interpretation of cardinalityand let



Z'+1 be the interpretation obtained fraf by adding one
unused individual to the domain. By the induction hypoth-
esis,Z*t! = Vx(¢). Thus, for every variable assignmet
of Zi+1, 771 B |= ¢. Since the domain df’ is a subset
of the domain ofZ**!, every variable assignment &t is
a variable assignment @ *!. Thus, for every variable as-
signmentB’ of Z¢, Zi*! B’ = ¢. We now show by induc-
tion over the length of the formulathat if 71, B’ |= ¢,
thenZ®, B’ = ¢.

If IiJrl’B/ ': (tl _ t2)’ then t%—i+173/ _ t§i+173/;

7 ’ 141 ’ 0 ’ 141 ’
clearly,t7 " = #] B andtZ VP = 2P and thus
1" =t % andT!, B’ k= (t = ta).

if B = p(t1, s tn),
(WETB B pT™ and thusZi, BY = 6.

then

1 ey 1L

If T+, B' | ~(ty = to) thent? B 2 (2708
and by the same argument as abd¥e B’ |= —(t; = t).
Similar forZ*1, B = —p(t1, ..., tn)-

If T+, B' |= by Ay, T8, B' |= by andT?, B/ = 1o,
then, clearlyZ?, B’ = 11 A o. Similar fori; V 1s.

If Z0+1 B’ = 3%(x A ¢), then there is ag-variant B”
of B’ such thatZ**!, B” = x A ¢. AssumeB” assigns
a free variable iny to an unused individual i@, then,
clearly,7:t!, B" ¥ x. Therefore, we may assume that
is anz-variant of B’ which does not assign any variable to
an unused individual, ar# !, B” |= x A ¢. By induction
we haveI’, B” = x andZ?, B" |= ¢, and thusZ’, B’ =
FZ(x A ¢).

If 71, B’ = VE(x D ¢), thenZ* B" =y D v for
everyz-variantB” of B’ of Z* (by the same argument as the
outer induction). Clearly, it*+!, B” ¥ y, thenZ’, B" ¥ ¥,
sincey is a conjunction of atomic formulas. By induction
we have that iff' !, B” |= ¢, thenZ!, B” = ¢, and thus
T+ B = VE(x D ¢).

(3) If Z E 3x(¢), then there is a variable assignmdht
such thatZ, B = ¢. LetZc be a cardinal interpretation
obtained fromZ by adding a sufficient number of unused
individuals to the domain. It is easy to verify using induc-
tion over the length of the formula, similar to the induction
in (2), thatifZ, B = ¢, thenZ¢, B = ¢ for ¢ anlESF for-
mula (note thatB is a variable assignment @F, because
the domain off€ is a superset of that @). Thus, by Corol-
lary[l, 3z(¢) is cardinal.

(4) Assumey), 1o are cardinal. Now, if every cardinal in-
terpretationZ is a model ofi); A 15, then every cardinal
interpretation is a model of; andy and, by cardinal-
ity of 11,9, every interpretation is a model @f, andis.
Therefore, every interpretation is a modelwf A > and
thusiy, A 1o is cardinal.

(5) Assumeyn, 1o are cardinal. IfZ = ¢ V ¢ thenZ E
Y1 or T | vy, SayZ = 41, then, by cardinality of),

and CorollanyL, there is a cardinal interpretatibnsuch
thatZ’ = 4; similar for ¢»s. Thus, there is a cardinal
interpretatiorZ’ such thatZ’ |= ¢ V ¥9 and thusp; V i
is cardinal. O

The following corollary follows immediately from The-
orem2, Propositiofil1 and Lemih 3:

Corollary 2. Let ® be a set ofSHZQ axioms andy a
SHZIQ axiom, then

O = ¢ iff 6(®) =5 6(0)

We conclude this section with the observation that the
results of Lemmdl3 immediately apply to HiLog, since
our definition of cardinality coincides with the definitioh o
cardinality in [i]. The following Corollary follows from
Lemmd® and the results inl[7].

Corollary 3. Let¢ be anf-safe sentence, thenis valid in
HiLog if and only if¢ is valid in FOL.

4 F-Logic DLP

Description Logic Programs (DLP)[114] can be seen as
the expressive intersection of Description logics anddogi
programming. The Description LogiDHL is the Horn
logic subset of an expressive Description Logic. We follow
here the definition oDH L given in [11], since itincludes a
slightly larger subset o HOZN (the language underlying
OWL DL) than the original definition in([14]. A Descrip-
tion Logic Program (DLP)I, is obtained from @&DHL
ontologyO by rewriting the axioms in the ontology to Horn
formulas and interpreting the formulas using the standard
minimal Herbrand semantics (see elg.l[20]). By the stan-
dard results in Logic Programming, we know ti@atand
IIp agree on ground entailment.

DHL descriptions are of the following form, wheré
is an atomic concept;, D are general descriptions, and
Cr, Dy (resp.Cr, D) are descriptions which are allowed
on the left-hand (resp. right-hand) side of the inclusiamsy
bol C, R, S are atomic roles; is an individual symbol:

C,D — A|CnD]|3RA{o}

Cr,D, — C|CL|_|DL|3RCL|> 1RL|
{01,...,0n}

CR7DR — C|VR.CR

A DHL ontology consists of axioms:
CLCDr|C=D|RES|R=S|R=S5"|
Trans(R) | TCEVR .Cr | TCVR.Cr|a€ A|
(a,by € R
There are several proposals for layering F-Logic pro-
gramming on top ofDHL (e.g. [17,[ID[2[16]. We show
that this layering is justified:



Proposition 2. Let O be aDH L ontology and letr(O) be
the FOL equivalent, witlr as defined in Tabld 2, then, for
the F-Logic theory (7(0)), with § as in TabldB holds:

O E aiff §(n(0)) F+ 6(a)
with o an equality-free ground atomic formula.

Proof. Equivalence (with respect to entailment, modulo the
transformationy) betweenr(O) andé(7(O)) follows from
TheorenfR, LemmBl3 and the fact thdO) is equivalent

to a set of Horn formulas without equality in the head]

5 WSML Layering

Figure[I(d) shows the different variants of the Web Ser-
vice Modeling Language (WSML) and the relationships be-
tween them. These variants differ in logical expressivenes
and in the underlying language paradigms.

! First-Order Logic

| (with nonmonotonic extensions) @
! L nonmonotonic exensions)

|

WSML-Full | ‘

WSML-DL

| WSML-Rule |

uolouOLILOU M)

01607 JopIO-Isily

WSML-Flight 1| |

WSML-Core| !

Description Logics

(suorsuepa o1

i First-Order Logic

o D) D

Logic Programming |
Logic Programming ‘
(with nonmonotonic negation)

Description Logics

(a) Language variants (b) Layering

Figure 1. WSML Variants and Layering

WSML-Core is based on by the intersection of the De-
scription LogicSHZ Q and Horn Logic, based on De-
scription Logic Program$114].

WSML-DL captures the Description Log&HZ Q (D).

WSML-Flight is based on the Datalog subset of F-Logic
programming variant, extended with inequality and
(locally) stratified negation under the perfect model se-
mantics[[22].

WSML-Rule is based on F-Logic programming, extended
with inequality and negation under the Well-Founded
semantics [13].

WSML-Full unifies WSML-DL and WSML-Rule under a
First-Order umbrella with nonmonotonic extensions.
The semantics of WSML-Full is ongoing research.

As shown in Figurd_I{(p), WSML has two alternative
layerings, namely, WSML-Core> WSML-DL = WSML-
Fulland WSML-Core= WSML-Flight= WSML-Rule=-

WSML-Full. For both layerings, WSML-Core and WSML-
Full mark the least and most expressive layers. The two lay-
erings are to a certain extent disjoint in the sense that-inte
operation in WSML between the Description Logic variant
(WSML-DL) on the one hand and the Logic Programming
variants (WSML-Flight and WSML-Rule) on the other, is
only possible through a common core (WSML-Core) or
through a very expressive superset (WSML-Full).

The original WSML specificatior{ [9] did not show any
semantic properties of this layering. We will first demon-
strate the layering WSML-Core- WSML-DL = WSML-

Full with respect to entailment, and the layering WSML-
Core = WSML-Flight = WSML-Rule with respect to
ground entailment. We cannot demonstrate the layering
WSML-Rule = WSML-Full, because WSML-Full has not
been fully specified yet.

For reasons of convenience, clarity and space, we do not
consider the WSML syntax in this section, but rather the
FOL and F-Logic equivalents, as definedih [9, Chapter 8].

WSML-Core = WSML-DL A WSML-Core ontology
O.ore CONsists of the first-order equivalent of a seff( L
axioms without nominals.O..,.. Core-entails a WSML-
Core formulap, denoted.ore Ecore @, iff for every first-
order model of O.ore, Z = ¢.

A WSML-DL ontology Oy consists of the first-order
equivalent of a set af HZ Q axioms.Oy DL-entails a for-
mula¢, denotedDy; Ea ¢, iff for every first-order model
7 of Ou,T ': (b

Theorem 3. Given a WSML-Core ontolog9.,.., and a
WSML-Core formula,

Ocore ':core Qb iff Ocore ':dl (b

Proof. Follows from the observation that every WSML-
Core ontology is a WSML-DL ontology. O

WSML-DL = WSML-Full We consider, for now, the
first-order logic subset of WSML-Full, which we will de-
note with WSML-FOL.

A WSML-FOL ontologyOy,; consists of a set of closed
first-order F-Logic formulas, as defined in Sectldn 2. We
say that a WSML-FOL ontology);,; FOL-entails a for-
mula ¢, denotedO . |=ro ¢, Iff for every F-structureZ
which is a model 00, Z = ¢.

Theorem 4. Given a WSML-DL ontology),, and a
WSML-DL formulag,

Oar Far ¢ iff {6(¢) | ¥ € Oar} ot 6(9)

Proof. Follows immediately from Corollafy2.



WSML-Core = WSML-Flight A WSML-Flight ontol- 6 Related Work
ogy Oyiign: consists of a seDf, ,, of F-Logic Datalog
rules, extended with locally stratified negation under the  Balaban [%] proposes to use Frame Logic as an under-
perfect model semantic5_[22] (c.t._18]), and a set of in- lying framework for description logics and use the flexibil-
tegrity constrainthClight, which are rules without a head. ity of F-Logic to extend description logics. DFLI[5] uses

O riigne 1s consistent if the perfect mod#! does not vi- F-Logic to reason about ontologies and rules. The major
olate any of the integrity constraints@ﬁiqht. An integrity differences between the approach of Balaban and our ap-
constraintc € O%ight is violated in}M if the body ofc is proach are: we do not need function symbols if the origi-

true in M for some variable substitutiadh nal language does not use function symbols. We allow ar-

A consistent WSML-Flight ontology Ogign: bitrary predicate-based ontology languages, whereas Bala
Flight-entails a ground atomic formulay, denoted ban’ translation restricted to Description Logics. Balaba
Ojlight Ef1ignt ¢, iff for every perfect modelM of uses a sorted F-Logic, whereas we do not need sorts for a
Oyiight, M = a. large class of formulas.

F-OWL [25] uses FLORAI[24], an F-Logic program-
Theorem 5. Given a WSML-Core ontolog9core, and an  ming implementation, to reason over OWL. The authors
atomic WSML-Core formula, capture the semantics of OWL using entailment rules over
RDF triples. It is not clear exactly which part of the seman-
. tics of OWL is captured in F-OWL.

Ocore Fcore v 1ff {6(¥) | ¥ € Ocore} = fiignt 6(c) Two proposals for extending OWL DL with meta-
modeling support are presented(inl[21]. The proposals are
. c o based on contextual predicate calculus and Hillag [7]. It
servation thaO;,,, = 0. - was not discussed i_[21] whether HIL&HOZQ is a

proper extension af HOZQ in the sense that 8HOZQ
WSML-Flight = WSML-Rule A WSML-Rule ontol-  knowledge baseb entails an axiomy if and only if ®
0ogy O, consists of a seD? . of F-Logic Hornrules, ex-  HiLog-entailss. We conjecture that by Corollafy 3 and the
tended with (un-stratified) negation under the well-fouhde fact that the semantics of HiLo§HOZQ is very close to
semantics[13] (c.fL123]), and a set of integrity consttsin  HilLog, HiLog-SHZQ is a proper extension &dHZQ, but
Of,1» Which are rules without a head. HiLog-SHOZQ is not a proper extension FHOZQ; it
O.uie is consistent if the well-founded modeél/ of might be the case thadt HiLog-entails¢, but not® entails

OZE . does not violate any of the integrity constraints in ¢. This intuition was confirmed by the author bf :1]
0¢ .. An integrity constraint € O¢,_ is violated inM if

rule* rule
the body ofc is true in M for some variable substitutich 7 Conclusions
We say that a consistent WSML-Rule ontology

O,yuie Rule-entails a ground atomic formuta, denoted

Proof. Follows immediately from Propositidih 2 and the ob-

- In predicate-based ontology representation languages
Orute Frute o, iff M = a. (e.g. Description Logics), classes are modeled as unary
predicates and properties as binary predicates, which are
interpreted as sets and as binary relations, respectiuely.
F-Logic, classes and properties are both first interpreded a
objects and then related to sets and relations, respactivel

In this paper we have introduced a translation from
Proof. Follows from the fact tha© ;.. is a locally strat- predicate-based ontologies to ontologies in F-Logic. We
ified logic program and that for locally stratified logic pro- have shown that this translation preserves entailment for
grams the single (total) well-founded model is also the per- large classes of predicate-based ontology languagesdincl

Theorem 6. Given a WSML-Flight ontolog® f;i4n:, and
an atomic WSML-Flight formula,

O tlight =rfiight @ iff Ofright Frule o

fect model of the prograni13]. Itis easy to see that; . ing the class otardinalformulas. Intuitively, cardinal for-
is a consistent WSML-Flight ontology ifD ;41 is @ con- mulas do not restrict the size of the domains of the models.
sistent WSML-Rule ontology. O We have defined the class 6fsafe formulas and shown

that £-safe formulas are cardinal. Finally, we have shown
Layering in WRL The Web Rule Language WRILI[2] that the class (_)f-s_afe formulas is a very expressive class
is a proposal for a rule language for the Web, based on©f formulas which includes th_e description logi¢{Z Q.
WSML. To be more precise, WRL-Core, WRL-Flight, and We hqve used 'Fhe translatlo.n t.o closelthe open problems
WRL-Full correspond to WSML-Core, WSML-Flight, and of F-Logic extension of De_scr|pt|on Logic Programsi[14]
WSML-Rule, respectively. Thus, the layering results ob- @nd WSML language layering [10].
tained in this paper apply immediately to WRL. 3personal communication.




The results obtained in this paper can be used for F-Logic [20] J. W. Lloyd. Foundations of Logic Programming (2nd edi-
based reasoning with, and extension of, classes of predicat
based ontology languages. Another application of the re- [21]
sults is the use of F-Logic as a vehicle for the extension of
RDF, similar to the first-order extensions of RDF described
in [B]. This encoding of RDF(S) in F-Logic is future work.
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