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Abstract

Many popular ontology languages are based on (subsets
of) first-order predicate logic, where classes are modeled as
unary predicates and properties as binary predicates, such
as Description Logics. Specifically, the ontology language
OWL DL is based on the Description LogicSHOIQ. F-
Logic is a different ontology language which is also based
on first-order logic, but classes and properties are repre-
sented as terms, rather than predicates. In this paper we
define a translation from predicate-based ontologies to F-
Logic ontologies and show that this translation preserves
entailments for large classes of ontologies, including most
of OWL DL. We define the class ofE-safe formulas, show
that the Description LogicSHIQ is E-safe, and show that
the translation preserves validity ofE-safe formulas. We
then use these results to close the open problems of layer-
ing F-Logic programming on top of Description Logic Pro-
grams and language layering in WSML.

1 Introduction

There have been several proposals for using F-Logic as
the basis for an ontology language for the Semantic Web
[17, 10, 2, 6]. In F-Logic, classes and properties are in-
terpreted as objects. This may hamper inter-operation with
Description Logic-based ontology languages (e.g. OWL DL
[12]), in which classes and properties are interpreted as
unary and binary predicates. We will call the way of mod-
eling ontologies in F-Logic “frame-based ontology mod-
eling” and the way of modeling ontologies in Description
Logics “predicate-based ontology modeling”.

More specifically, SWSL [6], WRL [2] and WSML [10]
claim that an F-Logic based variant of the language (WRL-
resp. WSML-Flight) is an extension of a Description Logic
(Programming) based variant of the language (WRL- resp.
WSML-Core). It is an open problem whether the F-Logic
based variants are really extensions of the Description Logic

based variant.
We define a translation from predicate-based ontologies

to F-Logic. We show that when considering sorted F-Logic,
the translation preserves entailment for arbitrary first-order
theories. We then show that this is not the case in general
when translating the ontology to an unsorted F-Logic lan-
guage, but for certain classes of first-order formulas, called
thecardinal formulas, the entailments are equivalent. Our
translation preserves function-freeness, i.e., if no function
symbol of arity> 0 was used in the original ontology, no
function symbol of arity> 0 will occur in the translated
ontology.

We show that the translation to unsorted F-Logic pre-
serves validity for large classes of predicate-based lan-
guages. We define the class ofE-safe formulas, show that
the Description LogicSHIQ is E-safe, and show thatE-
safe formulas are cardinal. Finally,E-safe formulas are
closed under negation, and thus entailment ofE-safe for-
mulas can be reduced to checking validity.

Our definition of cardinal formulas originates from
HiLog [7], and thus the class of cardinal formulas we de-
scribe in this paper, theE-safe formulas, can be used for
HiLog as well.

We use these results to close the open problem of F-
Logic extensions of Description Logic Programs [14] and
the problem of language layering in WSML (and thus also
WRL). We show that the WSML variants are indeed seman-
tically layered as suggested in [10]. Specifically, we show
that the language layering preserves (ground) entailment

Structure of the paper In Section 2 we review predicate-
and frame-based ontology modeling languages. In Section
3, We show that the translation of any predicate-based on-
tology to sorted F-Logic is faithful and that the translation
of cardinal formulas to unsorted F-Logic is faithful; we
identify the class ofE-safe formulas and demonstrate car-
dinality. We use this translation to show that the straight-
forward F-Logic extension of DLP preserves ground entail-
ment, in Section 4. We then use the translation to show



that the WSML language variant are layered, in Section 5.
Finally, we review related work in Section 6 and present
conclusions in Section 7.

2 Preliminaries

Predicate-based ontology modeling A predicate-based
ontology language is a first-order language in which unary
predicates represent classes of objects and binary predi-
cates represent properties (relations between objects). De-
scription Logics [3] are such predicate-based ontology lan-
guages. Of special interest isSHOIQ, which is the lan-
guage underlying OWL DL. We present the syntax and se-
mantics ofSHOIQ through a mapping to first-order logic
with equality. The descriptions are presented in Table 1;
the axioms are presented in Table 2. In the tables,A is
a named class,C,D are descriptions,Q,R are roles, and
a, b, o1, ..., on are individuals. Additionally, we have that in
thenumber restrictions> nR.C and6 nR.C,R have to be
simple, i.e.,R and its subroles may not be transitive (with
transitivity indicated byTrans(R))

The Description LogicSHIQ corresponds toSHOIQ
without the enumeration ({o1, ..., on}) and hasvalue
(∃R.{o}) descriptions. In the remainder of the paper, when
referring toSHOIQ (resp.SHIQ) axioms, we refer to the
FOL version of these axioms.

DL syntax FOL syntax
πy(A, X) A(X)
πy(⊤, X) X = X

πy(⊥, X) ¬(X = X)
πy(C1 ⊓ . . . ⊓ Cn, X)

V

πy(Ci, X)
πy(C1 ⊔ . . . ⊔ Cn, X)

W

πy(Ci, X)
πy(¬C, X) ¬πy(C, X)
πy({o1 . . . on}, X)

W

X = oi

πy(∃R.C, X) ∃y(R(X, y) ∧ πx(C, y))
πy(∀R.C, X) ∀y(R(X, y) ⊃ πx(C, y))
πy(∃R.{o}, X) R(X, o)

πy(> nR.C, X)
∃y1, . . . , yn(

V

R(X, yi)∧
V

πx(C, yi) ∧
V

¬yi = yj)

πy(6 nR.C, X)
∀y1, . . . , yn+1(

V

R(X, yi)∧
V

πx(C, yi) ⊃
W

yi = yj)
πx is defined asπy by substitutingx andxi for all y andyi, re-
spectively

Table 1. SHOIQ Descriptions

We distinguish between concept (unary predicate) and
role (binary predicate) symbols, and predicate symbols of
other arities, in the signature of the language. A first-order
signatureΣ has the formΣ = 〈A, C,R,P〉, whereA is
the set of function symbols, each with an associated arityn,
C is a set of concept (unary predicate) symbols,R is a set
of role (binary predicate) symbols, andP is a set ofn-ary
predicate symbols, withn = 0 or n ≥ 3. A, C,R, andP
are disjoint.

DL syntax FOL syntax
Class Axioms

C ⊑ D ∀x(πy(C, x) ⊃ πy(D, x))
C ≡ D ∀x(πy(C, x) ⊃ πy(D, x)) ∧ ∀x(πy(D, x) ⊃ πy(C, x))

Property Axioms
Q ⊑ R ∀x, y(Q(x, y) ⊃ R(x, y))
R ≡ Q− ∀x, y(R(x, y) ⊃ Q(y, x)) ∧ ∀x, y(Q(y, x) ⊃ R(x, y))
Trans(R) ∀x, y, z(R(x, y) ∧ R(y, z) ⊃ R(x, z))

Individual Axioms
a ∈ A A(a)
〈a, b〉 ∈ R R(a, b)
a = b a = b

a 6= b ¬(a = b)

Table 2. SHOIQ Axioms

Given a signatureΣ and a set of variable symbolsV ,
terms are either variables or constructed terms of the form
f(t1, ..., tn) with f ∈ A ann-ary function symbol (n ≥ 0)
and t1, ..., tn terms. Atomic formulas are expressions of
the formp(t1, ..., tn) with p ∈ C ∪ R ∪ P ann-ary pred-
icate symbol (n ≥ 0) and t1, ..., tn terms. Formulas of
a first-order languageLP are constructed as usual: every
atomic formula is a formula inLP ; compound formulas are
constructed using atomic formulas, the logical connectives
¬,∧,∨,⊃, the quantifiers∃, ∀ and the auxiliary symbols
), (.

An interpretation for a languageLP is a tupleI =
〈∆, ·I〉, where∆ is a nonempty set (calleddomain) and·I

is a mapping which assigns: a functionfI : ∆n → ∆ to ev-
eryn-ary function symbolf ∈ A, and a relationpI ⊆ ∆n,
to everyn-ary predicate symbolp ∈ C ∪ R ∪ P .

A variable assignmentB is a mapping which assigns an
elementxB ∈ ∆ to every variable symbolx. A variable
assignmentB′ is anx-variant ofB if yB = yB′

for every
variabley ∈ V for y 6= x.

Given an interpretationI = 〈∆, ·I〉, a variable assign-
mentB, and a termt of LP , tI,B is defined as:xI,B =
xB for variable symbolx and tI,B = fI(tI,B

1 , ..., tI,B
n )

for t of the formf(t1, ..., tn). I satisfiesan atomic for-
mulap(t1, ..., tn), given a variable assignmentB, denoted
I, B |= p(t1, ..., tn), if (tI,B

1 , ..., tI,B
n ) ∈ pI . I, B |= t1 =

t2 iff tI,B
1 = t

I,B
2 . This is extended to arbitrary formulas as

usual:I, B |= φ1∧φ2 (resp.I, B |= φ1∨φ2, I, B |= ¬φ1)
iff I, B |= φ1 andI, B |= φ2 (resp.I, B |= φ1 or I, B |=
φ2, I, B 2 φ1); I, B |= ∀x(φ1) (resp.I, B |= ∃x(φ1)) iff
for every (resp. for some)B′ which is anx-variant ofB,
I, B′ |= φ1.

An interpretationI is a modelof φ, denotedI |= φ, if
I, B |= φ for all variable assignmentsB; φ is satisfiable
if it has a model (unsatisfiable otherwise);φ is valid if ev-
ery interpretationI is a model ofφ. These definitions are
straightforwardly extended to the case of first-order theories
Φ ⊆ LP .
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A theoryΦ ⊆ LP entailsa formulaφ ∈ LP , denoted
Φ |= φ, iff for all interpretationsI in LP such thatI |= Φ,
I |= φ.

Frame-based ontology modeling Frame Logic [17, 18]
(F-Logic) is an extension of first-order logic which adds
explicit support for object-oriented modeling. It is pos-
sible to explicitly specify methods, as well as generaliza-
tion/specialization and instantiation relationships. The syn-
tax of F-Logic has some seemingly higher-order features,
namely, the same identifier can be used for a class, an in-
stance, and a method. However, the semantics of F-Logic is
strictly first-order. To simplify matters, we do not consider
parametrized methods, functional (single-valued) methods,
inheritable methods, and compound molecules.

The signature of an F-Logic languageLF is of the form
Σ = 〈F ,P〉 with F a set of function symbols andP a set of
predicate symbols, each with an associated arityn ≥ 0. Let
V be a set of variable symbols. Terms and atomic formulas
are constructed as in first-order logic:x ∈ V is a term and
f(t1, ..., tn) is a term, withf ∈ F ann-ary function symbol
andt1, ..., tn terms.

A molecule in F-Logic is one of the following state-
ments: (i) anis-a assertion of the formC : D, (ii) a
subclass-ofassertion of the formC :: D, or (iii) a data
molecule of the formC[D→→E]. with C,D,E terms. An
F-Logic molecule isgroundif it does not contain variables.

Formulas of an F-languageLF are either atomic formu-
las, molecules, or compound formula which are constructed
in the usual way from atomic formulas, molecules, and the
logical connectives¬,∧,∨,⊃, the quantifiers∃, ∀ and the
auxiliary symbols), (. We denote universal closure with
(∀).

F-Logic Horn formulas are of the form(∀)B1∧...∧Bn ⊃
H , with B1, ..., Bn, H atomic formulas or molecules. F-
Logic Datalog formulas are F-Logic Horn formulas without
function symbols and where every variable inH occurs in
B1, ..., Bn.

Interpretations in F-Logic are calledF-structures. An F-
structure is a tupleI = 〈U,≺U ,∈U , IF , IP , I→→〉. Here,
≺U is an irreflexive partial order on the domainU and∈U

is a binary relation overU . We writea �U b whena ≺U b

or a = b, for a, b ∈ U . For each F-structure holds that if
a ∈U b andb �U c thena ∈U c. Thus, if b �U c, then
{k | k ∈U b, k ∈ U} ⊆ {k | k ∈U c, k ∈ U}.

An n-ary function symbolf ∈ F is interpreted as a
function over the domainU : IF (f) : Un → U . An
n-ary predicate symbolp ∈ P is interpreted as a rela-
tion over the domainU : IP (p) ⊆ Un. I→→ associates
a partial functionU → P(U)1 with each element ofU :
I→→ : U −→ U → P(U).

1P(U) denotes the powerset ofU .

Variable assignments are as in first-order logic.
Given an interpretationI, a variable assignmentB, and

a termt of LF , tI,B is defined as:xI,B = xB for variable
symbolx andtI,B = IF (f)(tI,B1 , ..., tI,Bn ) for t of the form
f(t1, ..., tn).

Satisfactionof φ in I, given the variable assignmentB,
denotedI, B |=f φ, is defined as: (a)I, B |=f p(t1, ..., tn)

iff (tI,B1 , ..., tI,Bn ) ∈ IP (p), (b) I, B |=f t1 : t2 iff
t
I,B
1

∈U t
I,B
2

, (c) I, B |=f t1 :: t2 iff t
I,B
1

�U t
I,B
2

,
(d) I, B |=f t1[t2→→t3] iff I→→(tI,B2 )(tI,B1 ) is defined and
t
I,B
3 ∈ I→→(tI,B2 )(tI,B1 ), and (e)I, B |=f t1 = t2 iff tI,B1 =

t
I,B
2 . Extension to satisfaction of compound formulas is as

in first-order logic.
The notions of a model and of validity are defined anal-

ogous to first-order logic. A theoryΦ ⊆ LF F-entailsa
formulaφ ∈ LF , denotedΦ |=f φ, iff for all F-structuresI
such thatI |=f Φ, I |=f φ.

Sorted F-Logic In predicate-based ontology model-
ing, the sets of symbols used for concepts, roles and indi-
viduals are disjoint. This is not the case in F-Logic. This
disjointness can be regained by using asortedF-Logic lan-
guage.

We consider a sorted F-Logic language with three sorts:
individuals, concepts and roles. A sorted F-Logic language
has a sorted signatureΣ = 〈A, C,R,P〉, whereA is the
set of function symbols,C is a set of concept (nullary func-
tion) symbols,R is a set of role (nullary function) symbols,
andP is a set ofn-ary predicate symbols, withn ≥ 0.
A, C,R, andP are disjoint. The usual restrictions to the
use of symbols in formulas applies, namely only molecules
of the forma : c, c :: d, a[r→→b] are allowed, witha, b
terms constructed from symbols inA,V , c, d ∈ C ∪ V , and
r ∈ R ∪ V . Quantifiers need to be qualified withi, c, r to
indicate over which domain (individual, concept, role) the
variable quantifies.

A sorted F-structure has three disjoint domains:
Ui, Uc, Ur for the individuals, concepts, and roles, respec-
tively; ≺U is an irreflexive partial order overUc; ∈U is a
relation betweenUi andUc: ∈U : Ui × Uc. IF interprets
symbols inA as functions overUi, symbols inC as ele-
ments inUc, and symbols ofR as elements inUr. IP inter-
prets symbols inP asn-ary relations overUn

i . Finally,I→→
associates a partial mappingUi → P(Ui) to each element
of Ur.

3 Translating Predicate-Based Ontologies to
F-Logic

Table 3 defines a mapping from the predicate style of
ontology modeling to the frame style. In the table,A,B are
unary predicate symbols,C,D are formulas,R is a binary

3



Entity Predicate style Frame style
Class δ(A(X)) X : A
Property value δ(R(X,Y )) X [R→→Y ]
Equality δ(X = Y ) X = Y

n-ary relation δ(P ( ~X)) P ( ~X)
Universal δ(∀~x.C) ∀~x.δ(C)
Existential δ(∃~x.C) ∃~x.δ(C)
Conjunction δ(C ∧D) (δ(C) ∧ δ(D))
Disjunction δ(C ∨D) (δ(C) ∨ δ(D))
Implication δ(C ⊃ D) (δ(C) ⊃ δ(D))
Negation δ(¬C) ¬(δ(C))

Table 3. Translating predicate-based to
frame-based modeling

predicate symbol,P is ann-ary relation symbol, withn = 0
or n ≥ 3, x, y, z are variable symbols,a, b are constant
symbols, andX,Y are terms. The mappingδ is extended to
sets of formulas in the usual way.

Definition 1 (Translating formulas). Given a predicate-
based ontology languageLP with the signatureΣLP =
〈A, C,R,P〉. Let LF be the corresponding F-Logic lan-
guage which has the signatureΣLF = 〈F ,P〉, with F =
A∪ C ∪ R.

Given a set of first-order formulasΦ ⊆ LP , thenδ(Φ) ⊆
LF is thecorresponding setof F-Logic formulas, withδ as
in Table 3.

In the remainder of this section, we will first show that
the translation in Definition 1 is faithful (i.e., preservesen-
tailment) when considering a sorted F-Logic language. We
will then show that for a certain class of formulas, the class
of cardinal formulas, the translation is also faithful when
considering an unsorted language. Besides the classes of
cardinal formulas identified in [7], we identify the class of
E-safe formulas, show that reasoning inSHIQ can be re-
duced to validity ofE-safe formulas, and show thatE-safe
formulas are cardinal.

3.1 Translating to Sorted F-Logic

We first investigate a translation to sorted F-Logic. We
augment the translation in Table 3 to ensure that variables
are only quantified over the domain of individualsUi, by
replacing each universal quantifier∀ in Table 3 with∀i and
each existential quantifier∃ with ∃i.

We now show equi-satisfiability of formulas inLP , and
their F-Logic counterparts:

Lemma 1. Letφ be formula inLP and letLF be the cor-
responding sorted F-Logic language, thenφ is satisfied in
some interpretation ofLP if and only ifδ(φ) is satisfied in
some sorted F-structure ofLF .

Sketch.From any interpretationI of LP such thatI |= φ

one can easily construct a corresponding sorted F-structure
I such thatI |=f δ(φ), and vice versa.

Theorem 1. Let Φ ⊆ LP be a set of formulas in the lan-
guageLP , δ(Φ) ⊆ LF be the corresponding F-Logic for-
mulas in a sortedLF , and letφ ∈ LP be an arbitrary for-
mula, then:

Φ |= φ iff δ(Φ) |=f δ(φ)

Proof. Follows immediately from Lemma 1 and the fact
that checking entailmentΦ |= φ can be reduced to checking
unsatisfiability of(

∧
Φ) ∧ ¬φ.

3.2 Translating Cardinal Formulas

We now consider the translation functionδ of Table 3 in
its original form and we consider unsorted F-structures of
the formI = 〈U,�U ,∈U , IF , IP , I→→〉.

It turns out that we lose the correspondence of models in
the general case with this augmented definition. Consider,
for example, the following formula:

φ = (∀x, y.x = y) ⊃ (q(a) ↔ r(a))

The formulaφ is trivially satisfied in any interpretation
with more than one element in the domain, since the an-
tecedent will be trivially false in such an interpretation.If
we consider an interpretation with only one element, then
the antecedent is true, but the consequent is not necessarily
true, becauseq andr may be interpreted differently. Thus,
φ is not valid in FOL. Now consider the corresponding F-
Logic formula:

δ(φ) = (∀x, y.x = y) ⊃ (a : q ↔ a : r)

As we have seen, the original formulaφ is not valid in
LP . However,δ(φ) is valid in LF , sinceq andr must be
interpreted as the same class in every F-structure which has
exactly one element.

From the example we can see that the translationδ does
not work for arbitrary predicate-based ontology languages.
There is, however, a class of formulas for which the corre-
spondence does hold with the augmented definition. This is
the class ofcardinal formula as defined in [7].

Definition 2. Let Φ ⊆ LP be a set of formulas inLP , let
γ denote the number of symbols inLP , thenΦ is cardinal
with respect toLP if the following holds:

If Φ is true in every interpretationI such that the
cardinality of the domain ofI is at leastγ, then
Φ is true in every interpretation ofLP .
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An interpretationI = 〈∆, ·I〉 is cardinal if |∆| ≥ γ.

With a little abuse of notation we will also write|I| for
|∆| in the remainder.

Note that this condition does not hold for the formula
φ mentioned above, becauseφ is true in every interpreta-
tion with a domain of at least 3 elements, but it is not true
in every interpretation ofLP . The following definition of
cardinality is equivalent to Definition 2:

Corollary 1. Letφ be a formula inLP , thenφ is cardinal
with respect toLP if and only if:

If φ is true in an interpretation ofLP , thenφ is
true in an interpretation that is cardinal forLP .

Proof. Assumeφ is true in some interpretationI of LP ,
i.e., I |= φ. The latter is equivalent toI 6|= ¬φ, thus, by
contraposition of Definition 2, there is an interpretationI ′

which is cardinal forLP such thatI ′ 6|= ¬φ. The latter is
equivalent toI ′ |= φ.

We can now strengthen Lemma 1 and Theorem 1 to the
case of unsorted F-Logic:

Lemma 2. Letφ be a formula inLP . Then

1. if δ(φ) is satisfied in some F-structure ofLF , then
there is an interpretation ofLP which satisfiesφ, and

2. ifφ is cardinal and is satisfied in some interpretation of
LP , then there is an F-structure ofLF which satisfies
δ(φ).

Proof. Given a cardinal interpretationI = 〈∆, ·I〉 of LP ,
thenI = (I)FL = 〈U,�U ,∈U , IF , IP , I→→〉 is the corre-
sponding F-Logic structure, which is obtained as follows:
(i) U = ∆, (ii) ∀ f ∈ A: IF (f) = fI , (iii) ∀ c ∈ C:
IF (c) = kc for somekc ∈ U , (iv) ∀ r ∈ R: IF (r) = kr

for somekr ∈ U , (v) ∀ c ∈ C and every individualk ∈ ∆,
if k ∈ cI thenk ∈U IF (c), (vi) ∀ c1, c2 ∈ C: if cI1 ⊆ cI2
thenIF (c1) �U IF (c2), (vii) ∀ r ∈ R and∀ k1, k2 ∈ ∆,
if 〈k1, k2〉 ∈ rI thenk2 ∈ I→→(IF (r))(k1), and (viii) ∀
p ∈ P : IP (p) = pI . All kc andkr must be mutually dis-
joint. SinceI is cardinal, obviously there is such anI.

Given an F-structureI = 〈U,�U ,∈U , IF , IP , I→→〉 for
the languageLF , the corresponding FOL interpretationI =
(I)FOL = 〈∆, ·I〉 for LP is defined as follows: (i)∆ = U ,
(ii) ∀ f ∈ A: fI = IF (f), (iii) ∀ c ∈ C: cI = {k | k ∈U

IF (c) is true fork ∈ U}, (iv) ∀ r ∈ R: rI = {〈k1, k2〉 |
k2 ∈ I→→(IF (r))(k1), for k1, k2 ∈ U}, and (v)∀ p ∈ P :
pI = IP (p). Obviously, there is such anI.

We now proceed to prove the lemma:
(1) AssumeI |=f δ(φ) for some F-structureI, then it is

easy to verify thatI |= φ.

(2) AssumeI |= φ for some interpretationI and car-
dinal formulaφ. By Corollary 1, we have that there is a
cardinal modelI ′ of φ.

AssumeI ′, B |= φ for some variable assignmentB.
SinceI ′ is cardinal,I = (I ′)FL is defined. To prove the
lemma, it is sufficient to show thatI, B |=f δ(φ) (we may
use the same variable assignment, becauseU = ∆). We
proceed by induction over the length of the formulaφ.

Considerφ = C(X). I ′, B |= φ iff tI
′,B ∈ CI′

iff
tI,B ∈U IF (C). The ‘only if’ direction follows from (v)
in the translation above. The ‘if’ direction follows from
the fact thatIF (C) 6= k for any k = IF (D), with D 6=
C a concept identifier. Similar for formulas of the form
R(X,Y ).

Considerφ = (t1 = t2). I ′, B |= φ iff tI
′,B

1 = t
I′,B
2

iff tI,B
1 = t

I,B
2 . The last ‘iff’ follows trivially from the

construction ofI.
Considerφ = ∀x(ψ). I ′, B |= φ iff for every x-variant

B′ ofB, I ′, B′ |= ψ iff I, B′ |= δ(ψ). The last ‘iff’ follows
by induction and from the observation that the domains of
I andI are the same. Similar forφ = ∃x(ψ). This can be
trivially extended to formulas of the forms¬ψ,ψ1∧ψ2, and
ψ1 ∨ ψ2.

Theorem 2. LetΦ ⊆ LP be a set of formulas andφ ∈ LP

be a formula, then:

if Φ |= φ thenδ(Φ) |=f δ(φ)

If ¬(
∧

Φ) ∨ φ is cardinal, we have additionally:

Φ |= φ if δ(Φ) |=f δ(φ)

Proof. Follows from Lemma 2 and the observation that
checking entailment can be reduced to checking validity of
¬(

∧
Φ) ∨ φ.

Results on cardinal formulas for HiLog can be trans-
ferred to F-Logic. From [7] we know that equality-free sen-
tences, as well as negation of Horn clauses with no equality
in the antecedent are cardinal. This is, however, not suffi-
cient for many ontology languages which allow the asser-
tion of equality between individuals and maximal number
restrictions, such as the Description LogicSHIQ.

We define the class ofE-safe formulas (E stands for
“equality”) which allow onlysafeuses of equality. With
“safe” we mean that the use of the equality does not restrict
the size of the domains of the models. The structure ofE-
safe formulas is similar to the structure ofguardedformu-
las [1]. ForE-safe formulas, the guard ensures that equality
statements range only over part of the domain.

We first define the class oflimited E-safe formulas, de-
notedlESF :

5



lESF ::= A | ¬A | φ1 ∧ φ2 | φ1 ∨ φ2 |
∀~x(χ ⊃ φ) | ∃~x(χ ∧ φ)

whereA is an atomic formula either of the formp(~t) or
t1 = t2 with t1, t2 either both ground or non-ground terms;
φ, φ1, φ2 arelE-safe formulas, andχ is either an atom of the
form p(~t) or a conjunction of atoms of the formp(~t) such
that every atom inχ with free variables shares at least one
variable with another atom2. Finally, every free variable in
φ must be appear inχ. We now define the class ofE-safe
formulas, denotedESF :

ESF ::= ϕ | ∀x(φ) | ∃x(φ) | ψ1 ∧ ψ2 | ψ1 ∨ ψ2

With ψ1, ψ2 E-safe formulas,φ, ϕ lE-safe formulas, and
x the only free variable inφ. As usual, anE-safe sentence
is anE-safe formula without free variables.

We consider formulas of the forms∀x(x = x ⊃ φ) and
∃x(x = x ∧ φ), with φ an lE-safe formula with one free
variablex, E-safe, because they are equivalent to∀x(φ) and
∃x(φ), respectively. As is usual in guarded logics, we thus
assume that formulas∀x(φ), ∃x(φ) are guarded byx = x.

Notice that the negation of anE-safe formula isE-safe
as well.

Example 1. The following formulas areE-safe:
∀x.(p(x) ⊃ q(x))
∀x.(s(x, y) ⊃ p(x))
∃x, y.p(x) ∧ r(x, y) ∧ x = y

∀x.r(x)
The following formulas are notE-safe:
∀x, y.x = y

∀x.a(x) ∧ a(y) ⊃ x = y

∀x.x = y ⊃ p(x, y)

Many expressive Description Logic languages areE-
safe, includingSHIQ:

Proposition 1. Any (negation of a)SHIQ axiomφ can be
rewritten to anE-safe formulaφ′ such thatφ and φ′ are
equivalent, i.e., share the same models.

Proof. Assumeφ is the first-order version aSHIQ axiom
(translation ofSHIQ axioms to FOL formulas can be done
according to Table 2). In caseφ is a property or individual
axiom, it is triviallyE-safe andφ′ = φ.

Say,φ is a class axiom of the formφ ≡ ∀x(φ1 ⊃ φ0).
Given the form ofφ and the translation in Table 2, one can
transformφ1 ⊃ φ0 to a conjunctionψ of lE-safe formu-
las, e.g., removing disjunction from the antecedent induces

2The atoms must form a “chain”, where the shared variables arethe
links in the chain.

a splitting of the original formula in a conjunction of formu-
las, such thatφ′ ≡ ∀xψ is anE-safe formula that is equiva-
lent toφ.

As the negation of anE-safe formula is again anE-safe
formula we have that the negation of aSHIQ axiom isE-
safe as well.

Note thatSHOIQ formulas are notE-safe in general,
because of the possibility of using nominals. Consider, for
example, theSHOIQ knowledge base{⊤ ⊑ {a}}. This
is equivalent to the first-order sentence∀x(x = a). Every
model of this knowledge base has exactly one element in
its domain. This generalizes to any Description Logic with
unrestricted use of nominals.

E-safe formulas are a highly expressive class of formu-
las. In fact, it is easy to see, using a modification of Propo-
sition 1, thatSHIQ knowledge bases extended with Horn
formulas can be equivalently translated to sets ofE-safe for-
mulas. As entailment in the former is undecidable in gen-
eral [19], entailment ofE-safe formulas is undecidable in
general, as well.

We now formulate our main result with respect to cardi-
nal formulas:

Lemma 3. The following classes of formulas first-order
formulas are cardinal:

1. Sets of equality-free sentences,

2. formulas of the form¬S, whereS is a conjunction of
Horn clauses without equality in the head,

3. the class ofE-safe sentences.

Proof. Cardinality of the first and second class is shown
in [7]. We proceed with the proof of cardinality ofE-safe
formulas.

There are five types ofE-safe sentences: (1)lESF sen-
tences, (2) universal and (3) existentialE-safe sentences and
(4) conjunctions and (5) disjunctions ofE-safe sentences.
Any lESF sentenceφ can be equivalently written as a uni-
versal sentence∀x(φ). We now proceed to prove cardinality
of sentences of the forms (2,3,4,5).

We need the following auxiliary notion. Given an in-
terpretationI = 〈∆, ·I〉, k ∈ ∆ is unusedin I if: (a)
k does not occur in the domain or the range of a function
fI : ∆n → ∆ for f ∈ A, and (b)k does not occur in a
relationpI : ∆n for p ∈ C ∪R ∪ P .

(2) We proceed by induction. AssumeI≥γ |= ∀x(φ) for
every cardinal interpretationI≥γ . We will show that if
Ii+1 |= ∀x(φ) for every interpretationIi+1 of cardinality
i + 1, thenIi |= φ for every interpretationIi of cardinal-
ity i, with i ≥ 1. By induction, this guarantees that every
interpretation is a model of∀x(φ), and thus the formula is
cardinal. LetIi be an interpretation of cardinalityi, and let
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Ii+1 be the interpretation obtained fromIi by adding one
unused individual to the domain. By the induction hypoth-
esis,Ii+1 |= ∀x(φ). Thus, for every variable assignmentB

of Ii+1, Ii+1, B |= φ. Since the domain ofIi is a subset
of the domain ofIi+1, every variable assignment ofIi is
a variable assignment ofIi+1. Thus, for every variable as-
signmentB′ of Ii, Ii+1, B′ |= φ. We now show by induc-
tion over the length of the formulaφ that if Ii+1, B′ |= φ,
thenIi, B′ |= φ.

If Ii+1, B′ |= (t1 = t2), then tI
i+1,B′

1 = t
Ii+1,B′

2 ;

clearly, tI
i,B′

1 = t
Ii+1,B′

1 andtI
i,B′

2 = t
Ii+1,B′

2 , and thus

t
Ii,B′

1 = t
Ii,B′

2 andIi, B′ |= (t1 = t2).
If Ii+1, B′ |= p(t1, ..., tn), then

〈tI
i+1,B′

1 , ..., tI
i+1,B′

n 〉 ∈ pI
i+1

and thusIi, B′ |= φ.

If Ii+1, B′ |= ¬(t1 = t2) then tI
i+1,B′

1 6= t
Ii+1,B′

2 ,
and by the same argument as above,Ii, B′ |= ¬(t1 = t2).
Similar forIi+1, B′ |= ¬p(t1, ..., tn).

If Ii+1, B′ |= ψ1 ∧ ψ2, Ii, B′ |= ψ1 andIi, B′ |= ψ2,
then, clearly,Ii, B′ |= ψ1 ∧ ψ2. Similar forψ1 ∨ ψ2.

If Ii+1, B′ |= ∃~x(χ ∧ φ), then there is an~x-variantB′′

of B′ such thatIi+1, B′′ |= χ ∧ φ. AssumeB′′ assigns
a free variable inχ to an unused individual inIi+1, then,
clearly,Ii+1, B′′

2 χ. Therefore, we may assume thatB′′

is an~x-variant ofB′ which does not assign any variable to
an unused individual, andIi+1, B′′ |= χ ∧ φ. By induction
we have,Ii, B′′ |= χ andIi, B′′ |= φ, and thusIi, B′ |=
∃~x(χ ∧ φ).

If Ii+1, B′ |= ∀~x(χ ⊃ φ), thenIi+1, B′′ |= χ ⊃ ψ for
every~x-variantB′′ ofB′ of Ii (by the same argument as the
outer induction). Clearly, ifIi+1, B′′

2 χ, thenIi, B′′
2 χ,

sinceχ is a conjunction of atomic formulas. By induction
we have that ifIi+1, B′′ |= φ, thenIi, B′′ |= φ, and thus
Ii+1, B′ |= ∀~x(χ ⊃ φ).

(3) If I |= ∃x(φ), then there is a variable assignmentB

such thatI, B |= φ. Let Ic be a cardinal interpretation
obtained fromI by adding a sufficient number of unused
individuals to the domain. It is easy to verify using induc-
tion over the length of the formula, similar to the induction
in (2), that ifI, B |= φ, thenIc, B |= φ for φ anlESF for-
mula (note thatB is a variable assignment ofIc, because
the domain ofIc is a superset of that ofI). Thus, by Corol-
lary 1,∃x(φ) is cardinal.

(4) Assumeψ1, ψ2 are cardinal. Now, if every cardinal in-
terpretationI is a model ofψ1 ∧ ψ2, then every cardinal
interpretation is a model ofψ1 andψ2 and, by cardinal-
ity of ψ1, ψ2, every interpretation is a model ofψ1 andψ2.
Therefore, every interpretation is a model ofψ1 ∧ ψ2 and
thusψ1 ∧ ψ2 is cardinal.

(5) Assumeψ1, ψ2 are cardinal. IfI |= ψ1 ∨ ψ2 thenI |=
ψ1 or I |= ψ2. SayI |= ψ1, then, by cardinality ofψ1

and Corollary 1, there is a cardinal interpretationI ′ such
that I ′ |= ψ1; similar for ψ2. Thus, there is a cardinal
interpretationI ′ such thatI ′ |= ψ1 ∨ ψ2 and thusψ1 ∨ ψ2

is cardinal.

The following corollary follows immediately from The-
orem 2, Proposition 1 and Lemma 3:

Corollary 2. Let Φ be a set ofSHIQ axioms andφ a
SHIQ axiom, then

Φ |= φ iff δ(Φ) |=f δ(φ)

We conclude this section with the observation that the
results of Lemma 3 immediately apply to HiLog, since
our definition of cardinality coincides with the definition of
cardinality in [7]. The following Corollary follows from
Lemma 3 and the results in [7].

Corollary 3. Letφ be anE-safe sentence, thenφ is valid in
HiLog if and only ifφ is valid in FOL.

4 F-Logic DLP

Description Logic Programs (DLP) [14] can be seen as
the expressive intersection of Description logics and logic
programming. The Description LogicDHL is the Horn
logic subset of an expressive Description Logic. We follow
here the definition ofDHL given in [11], since it includes a
slightly larger subset ofSHOIN (the language underlying
OWL DL) than the original definition in [14]. A Descrip-
tion Logic Program (DLP)ΠO is obtained from aDHL
ontologyO by rewriting the axioms in the ontology to Horn
formulas and interpreting the formulas using the standard
minimal Herbrand semantics (see e.g. [20]). By the stan-
dard results in Logic Programming, we know thatO and
ΠO agree on ground entailment.

DHL descriptions are of the following form, whereA
is an atomic concept,C,D are general descriptions, and
CL, DL (resp.CR, DR) are descriptions which are allowed
on the left-hand (resp. right-hand) side of the inclusion sym-
bol⊑,R,S are atomic roles,o is an individual symbol:
C,D −→ A | C ⊓D | ∃R.{o}

CL, DL −→ C | CL ⊔DL | ∃R.CL |> 1RL |
{o1, . . . , on}

CR, DR −→ C | ∀R.CR

A DHL ontology consists of axioms:
CL ⊑ DR | C ≡ D | R ⊑ S | R ≡ S | R ≡ S− |
Trans(R) | ⊤ ⊑ ∀R−.CR | ⊤ ⊑ ∀R.CR | a ∈ A |
〈a, b〉 ∈ R
There are several proposals for layering F-Logic pro-

gramming on top ofDHL (e.g. [17, 10, 2, 6]. We show
that this layering is justified:
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Proposition 2. LetO be aDHL ontology and letπ(O) be
the FOL equivalent, withπ as defined in Table 2, then, for
the F-Logic theoryδ(π(O)), with δ as in Table 3 holds:

O |= α iff δ(π(O)) |=f δ(α)

with α an equality-free ground atomic formula.

Proof. Equivalence (with respect to entailment, modulo the
transformationδ) betweenπ(O) andδ(π(O)) follows from
Theorem 2, Lemma 3 and the fact thatπ(O) is equivalent
to a set of Horn formulas without equality in the head.

5 WSML Layering

Figure 1(a) shows the different variants of the Web Ser-
vice Modeling Language (WSML) and the relationships be-
tween them. These variants differ in logical expressiveness
and in the underlying language paradigms.
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WSML-FullWSML-DL

First-Order Logic
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(a) Language variants

WSML-Rule

First-Order Logic

WSML-Flight

Logic Programming

Description Logics

WSML-DL

WSML-Core

WSML-Full

(b) Layering

Figure 1. WSML Variants and Layering

WSML-Core is based on by the intersection of the De-
scription LogicSHIQ and Horn Logic, based on De-
scription Logic Programs [14].

WSML-DL captures the Description LogicSHIQ(D).

WSML-Flight is based on the Datalog subset of F-Logic
programming variant, extended with inequality and
(locally) stratified negation under the perfect model se-
mantics [22].

WSML-Rule is based on F-Logic programming, extended
with inequality and negation under the Well-Founded
semantics [13].

WSML-Full unifies WSML-DL and WSML-Rule under a
First-Order umbrella with nonmonotonic extensions.
The semantics of WSML-Full is ongoing research.

As shown in Figure 1(b), WSML has two alternative
layerings, namely, WSML-Core⇒ WSML-DL ⇒ WSML-
Full and WSML-Core⇒ WSML-Flight⇒ WSML-Rule⇒

WSML-Full. For both layerings, WSML-Core and WSML-
Full mark the least and most expressive layers. The two lay-
erings are to a certain extent disjoint in the sense that inter-
operation in WSML between the Description Logic variant
(WSML-DL) on the one hand and the Logic Programming
variants (WSML-Flight and WSML-Rule) on the other, is
only possible through a common core (WSML-Core) or
through a very expressive superset (WSML-Full).

The original WSML specification [9] did not show any
semantic properties of this layering. We will first demon-
strate the layering WSML-Core⇒ WSML-DL ⇒ WSML-
Full with respect to entailment, and the layering WSML-
Core ⇒ WSML-Flight ⇒ WSML-Rule with respect to
ground entailment. We cannot demonstrate the layering
WSML-Rule⇒ WSML-Full, because WSML-Full has not
been fully specified yet.

For reasons of convenience, clarity and space, we do not
consider the WSML syntax in this section, but rather the
FOL and F-Logic equivalents, as defined in [9, Chapter 8].

WSML-Core ⇒ WSML-DL A WSML-Core ontology
Ocore consists of the first-order equivalent of a set ofDHL
axioms without nominals.Ocore Core-entails a WSML-
Core formulaφ, denotedOcore |=core φ, iff for every first-
order modelI of Ocore, I |= φ.

A WSML-DL ontology Odl consists of the first-order
equivalent of a set ofSHIQ axioms.Odl DL-entails a for-
mulaφ, denotedOdl |=dl φ, iff for every first-order model
I of Odl, I |= φ.

Theorem 3. Given a WSML-Core ontologyOcore, and a
WSML-Core formulaφ,

Ocore |=core φ iff Ocore |=dl φ

Proof. Follows from the observation that every WSML-
Core ontology is a WSML-DL ontology.

WSML-DL ⇒ WSML-Full We consider, for now, the
first-order logic subset of WSML-Full, which we will de-
note with WSML-FOL.

A WSML-FOL ontologyOfol consists of a set of closed
first-order F-Logic formulas, as defined in Section 2. We
say that a WSML-FOL ontologyOfol FOL-entails a for-
mula φ, denotedOfol |=fol φ, iff for every F-structureI
which is a model ofOfol, I |=f φ.

Theorem 4. Given a WSML-DL ontologyOdl, and a
WSML-DL formulaφ,

Odl |=dl φ iff {δ(ψ) | ψ ∈ Odl} |=fol δ(φ)

Proof. Follows immediately from Corollary 2.
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WSML-Core ⇒ WSML-Flight A WSML-Flight ontol-
ogy Oflight consists of a setOR

flight of F-Logic Datalog
rules, extended with locally stratified negation under the
perfect model semantics [22] (c.f. [18]), and a set of in-
tegrity constraintsOC

flight, which are rules without a head.
Oflight is consistent if the perfect modelM does not vi-

olate any of the integrity constraints inOC
flight. An integrity

constraintc ∈ OC
flight is violated inM if the body ofc is

true inM for some variable substitutionθ.
A consistent WSML-Flight ontology Oflight

Flight-entails a ground atomic formulaα, denoted
Oflight |=flight α, iff for every perfect modelM of
Oflight,M |= α.

Theorem 5. Given a WSML-Core ontologyOcore, and an
atomic WSML-Core formulaα,

Ocore |=core α iff {δ(ψ) | ψ ∈ Ocore} |=flight δ(α)

Proof. Follows immediately from Proposition 2 and the ob-
servation thatOC

flight = ∅.

WSML-Flight ⇒ WSML-Rule A WSML-Rule ontol-
ogyOrule consists of a setOR

rule of F-Logic Horn rules, ex-
tended with (un-stratified) negation under the well-founded
semantics [13] (c.f. [23]), and a set of integrity constraints
OC

rule, which are rules without a head.
Orule is consistent if the well-founded modelM of

OR
rule does not violate any of the integrity constraints in

OC
rule. An integrity constraintc ∈ OC

rule is violated inM if
the body ofc is true inM for some variable substitutionθ.

We say that a consistent WSML-Rule ontology
Orule Rule-entails a ground atomic formulaα, denoted
Orule |=rule α, iff M |= α.

Theorem 6. Given a WSML-Flight ontologyOflight, and
an atomic WSML-Flight formulaα,

Oflight |=flight α iff Oflight |=rule α

Proof. Follows from the fact thatOflight is a locally strat-
ified logic program and that for locally stratified logic pro-
grams the single (total) well-founded model is also the per-
fect model of the program [13]. It is easy to see thatOflight

is a consistent WSML-Flight ontology iffOflight is a con-
sistent WSML-Rule ontology.

Layering in WRL The Web Rule Language WRL [2]
is a proposal for a rule language for the Web, based on
WSML. To be more precise, WRL-Core, WRL-Flight, and
WRL-Full correspond to WSML-Core, WSML-Flight, and
WSML-Rule, respectively. Thus, the layering results ob-
tained in this paper apply immediately to WRL.

6 Related Work

Balaban [4] proposes to use Frame Logic as an under-
lying framework for description logics and use the flexibil-
ity of F-Logic to extend description logics. DFL [5] uses
F-Logic to reason about ontologies and rules. The major
differences between the approach of Balaban and our ap-
proach are: we do not need function symbols if the origi-
nal language does not use function symbols. We allow ar-
bitrary predicate-based ontology languages, whereas Bala-
ban’ translation restricted to Description Logics. Balaban
uses a sorted F-Logic, whereas we do not need sorts for a
large class of formulas.

F-OWL [25] uses FLORA [24], an F-Logic program-
ming implementation, to reason over OWL. The authors
capture the semantics of OWL using entailment rules over
RDF triples. It is not clear exactly which part of the seman-
tics of OWL is captured in F-OWL.

Two proposals for extending OWL DL with meta-
modeling support are presented in [21]. The proposals are
based on contextual predicate calculus and HiLog [7]. It
was not discussed in [21] whether HiLog-SHOIQ is a
proper extension ofSHOIQ in the sense that aSHOIQ
knowledge baseΦ entails an axiomφ if and only if Φ
HiLog-entailsφ. We conjecture that by Corollary 3 and the
fact that the semantics of HiLog-SHOIQ is very close to
HiLog, HiLog-SHIQ is a proper extension ofSHIQ, but
HiLog-SHOIQ is not a proper extension ofSHOIQ; it
might be the case thatΦ HiLog-entailsφ, but notΦ entails
φ. This intuition was confirmed by the author of [21]3.

7 Conclusions

In predicate-based ontology representation languages
(e.g. Description Logics), classes are modeled as unary
predicates and properties as binary predicates, which are
interpreted as sets and as binary relations, respectively.In
F-Logic, classes and properties are both first interpreted as
objects and then related to sets and relations, respectively.

In this paper we have introduced a translation from
predicate-based ontologies to ontologies in F-Logic. We
have shown that this translation preserves entailment for
large classes of predicate-based ontology languages, includ-
ing the class ofcardinal formulas. Intuitively, cardinal for-
mulas do not restrict the size of the domains of the models.
We have defined the class ofE-safe formulas and shown
thatE-safe formulas are cardinal. Finally, we have shown
that the class ofE-safe formulas is a very expressive class
of formulas which includes the description logicSHIQ.

We have used the translation to close the open problems
of F-Logic extension of Description Logic Programs [14]
and WSML language layering [10].

3Personal communication.
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The results obtained in this paper can be used for F-Logic
based reasoning with, and extension of, classes of predicate-
based ontology languages. Another application of the re-
sults is the use of F-Logic as a vehicle for the extension of
RDF, similar to the first-order extensions of RDF described
in [8]. This encoding of RDF(S) in F-Logic is future work.
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