
Closed World Reasoning in the Semantic Web

through Epistemic Operators

Stephan Grimm and Boris Motik

FZI Research Center for Information Technologies at the University of Karlsruhe
Karlsruhe, Germany

{grimm,motik}@fzi.de

Abstract. The open world assumption makes OWL principally suit-
able to handle incomplete knowledge in Semantic Web scenarios, how-
ever, some scenarios desire closed world reasoning. Autoepistemic de-
scription logics allow to realise closed world reasoning in open world set-
tings through epistemic operators. An extension of OWL by epistemic
operators therefore allows for non-monotonic features known from closed
world systems, such as default rules, integrity constraints or epistemic
querying. These features can be beneficially applied in Semantic Web
scenarios, where OWL lacks expressiveness.

1 Introduction

An important goal in the design of the Ontology Web Language (OWL) [8] was to
produce a language with a well-defined formal semantics. This goal was achieved
by basing the semantics on description logics (DL) [2]. The DLs underlying OWL
are actually fragments of first-order logic, so they employ the so-called open world

assumption (OWA) [6]. Under OWA, failure to derive a fact does not imply the
opposite. For example, assume we only know that Peter is a person. From this
information we can neither conclude that Peter is a vegetarian, nor that he is not
one. Hence, we admit the fact that our knowledge of the world is incomplete. The
open world assumption is closely related to the monotonic nature of first-order
logic: adding new information never falsifies a previous conclusion. Namely, if we
subsequently learn that Peter is indeed a vegetarian, this does not change any
positive or negative conclusions.

The open world assumption seems to correctly model much of day-to-day
reasoning. However, the framework of first-order logic may be unsuitable for
certain situations which require complete knowledge about the world. Consider
a table of train departure times. If the table does not explicitly state that a
train leaves at 12:47, then we usually conjecture that there is no such train. In
other words, for train time-tables we typically use the closed world assumption

(CWA), assuming that our knowledge about that part of the world is complete.
Under CWA, we conclude that there is no train at 12:47 unless we can prove the
contrary. Such inference is non-monotonic, meaning that additional knowledge
can invalidate previous conclusions. For example, learning that there is a train
at 12:47 invalidates our earlier conjecture.

2 Stephan Grimm and Boris Motik

Many knowledge modelling constructs are related to CWA and cannot be
expressed in first-order logic. Default rules allow for modelling exceptions. For
example, we may make a common conjecture that people eat meat, unless we
know them to be vegetarians. This rule relieves us from the burden of explicitly
asking each person whether he is a vegetarian or not.

Constraints also depend on closed world reasoning. For example, we could
easily embarrass ourselves by inviting a vegetarian to dinner and then preparing
Beef Stoganoff just because we forgot to ask the guest if he is a vegetarian. To
prevent such situations, we might introduce a constraint stating that for each
guest his views on eating meat should be known.

Choosing between OWA or CWA is often an all-or-nothing game, thus pos-
ing problems for applications which need to deal with both kinds of information
at once. For example, in an application dealing with travelling vegetarians, as-
suming that a person eats meat just because we do not know that he is not a
vegetarian may be wrong; however, assuming that one might get to the Interna-
tional Vegetarianism Convention by a train which is not listed in the time table,
seems wrong as well. In other words, we believe that many applications require
OWA and CWA in parallel, allowing for local closed world (LCW) reasoning [4].
Such reasoning is based on the OWA augmented by the possibility to explicitly
close off parts of the world.

A common objection to extending DLs with non-monotonic constructs is that
completeness of knowledge can be stated in a purely first-order setting. For ex-
ample, using nominals one can restrict an interpretation of a concept to exactly
the specified set of individuals. However, this solves the problem only partially,
since there is no equivalent nominal construct for roles. Moreover, such a solu-
tion does not provide introspection — reasoning about the state of the knowledge
base. Introspection is not definable in first-order logic, but is necessary for for-
malising defaults or constraints. Similarly, a common objection to introducing
defaults and constraints is that they should be realised outside the logic, for ex-
ample, by checking for missing information in a preprocessing step. We strongly
disagree with such a view. Namely, it is unclear how to define the semantics
of such a step. If the semantics were defined in an ad-hoc manner, we would
soon experience the same problems observed in the early frame representation
systems, which eventually lead to formal reconstruction of their semantics.

To summarise, we believe that OWL should be extended with non-monotonic
constructs. In this paper we sketch a possible solution based on autoepistemic

description logics (ADL) [3]. Of all candidate formalisms, we find this formalism
to be particularly suitable since it properly extends OWL. We show how ADLs
can be used to provide local closed world reasoning, default rules and constraints
in the Semantic Web setting. Whereas such applications of ADLs were already
discussed in [3], with our presentation we aim at additionally explaining some
technicalities underlying ADLs. Furthermore, our goal is to demonstrate the
benefits of non-monotonic extensions of OWL to the Semantic Web community.
Finally, we point out to the remaining questions which need to be answered to
realise a non-monotonic extension of OWL by epistemic operators.

Closed World Reasoning in the Semantic Web through Epistemic Operators 3

2 Epistemic Operators for OWL

Autoepistemic logic is a formalism concerned with the notions of ‘knowledege’
and ‘assumption’ and allows for introspection of knowledge bases, i.e. to ask
what a knowledge base knows or assumes. (See e.g. [1].) In this section we
present an autoepistemic extension to DL introduced in [3]. Although OWL-
DL corresponds to the expressive DL SHOIN (D), we adopt the simpler DL
ALC for this extension, for which the underlying theory is covered by [3]. One
of the open research problems remains how this theory can be extended to also
cover additional constructs in SHOIN (D) and reasoning with OWL ontologies.

Autoepistemic Description Logics

In [3] the basic DL ALC has been extended by two operators, K and A, re-
flecting the notions of ‘knowledge’ and ‘assumption’. The following rules define
the syntax of the resulting language ALCKNF , where C,D denote concepts, A
denotes a primitive concept, r denotes a role and p denotes a primitive role.

C, D −→ A | ⊤ | ⊥ | C ⊓ D | C ⊔ D | ¬C | ∀ r.C | ∃ r.C | KC | AC

r −→ p | Kp | Ap

An epistemic interpretation is a triple (I,WK,WA) where I = (∆I , ·I) is
a first-order interpretation with interpretation domain ∆I and interpretation
function ·I , and WK,WA are sets of first-order interpretations, seen as possible
worlds for the two modalities K and A in the sense of modal logics. The following
equations define how the elements of ALCKNF are epistemically interpreted.

⊤I,WK,WA = ∆I , ⊥I,WK,WA = ∅
AI,WK,WA = AI ⊆ ∆I , pI,WK,WA = pI ⊆ ∆I × ∆I

(C ⊓ D)I,WK,WA = CI,WK,WA ∩ DI,WK,WA

(C ⊔ D)I,WK,WA = CI,WK,WA ∪ DI,WK,WA

(¬C)I,WK,WA = ∆I \ CI,WK,WA

(∀ r.C)I,WK,WA = {a ∈ ∆I | ∀b.(a, b) ∈ rI,WK,WA → b ∈ CI,WK,WA}
(∃ r.C)I,WK,WA = {a ∈ ∆I | ∃b.(a, b) ∈ rI,WK,WA ∧ b ∈ CI,WK,WA}

(KC)I,WK,WA =
⋂

J∈WK
CJ ,WK,WA , (AC)I,WK,WA =

⋂
J∈WA

CJ ,WK,WA

(Kp)I,WK,WA =
⋂

J∈WK
pJ ,WK,WA , (Ap)I,WK,WA =

⋂
J∈WA

pJ ,WK,WA

Primitive concepts are interpreted as subsets of ∆I , and primitive roles as
subsets of ∆I×∆I . The boolean connectives and existential and universal role
quantification are interpreted in terms of set operations on ∆I , as in ALC [2].
Epistemic concepts KC and AC are interpreted as the sets of all individuals
which belong to the concept C in all first-order interpretations in WK and WA,
respectively. Similarly, epistemic roles Kp and Ap are interpreted as the pairs
of individuals that belong to the role p in all possible worlds in WK and WA.

An epistemic interpretation satisfies an inclusion axiom C ⊑ D if CI,WK,WA ⊆
DI,WK,WA , and it satisfies an assertion axiom C(a) or r(a, b) if aI ∈ CI,WK,WA

or (aI , bI) ∈ rI,WK,WA , respectively. An epistemic model for an ALCKNF knowl-
edge base KB is a non-empty set M of first-order interpretations such that, for

4 Stephan Grimm and Boris Motik

each I ∈ M, the epistemic interpretation (I,M,M) satisfies all axioms in KB

and there is no set M′ of first order interpretations such that M ⊂ M′ and the
epistemic interpretation (I,M′,M) also satisfies all axioms in KB . An ALCKNF

knowledge base KB is satisfiable if it has an epistemic model. It entails an axiom
α, denoted by KB |= α, if α is satisfied in all its epistemic models.

Intuition behind Epistemic Operators

The semantics of both epistemic operators, K and A, is defined as an intersection
of concept/role extensions over sets of first-order interpretations WK,WA, seen
as possible worlds. Therefore they both ensure statements to hold in all possible
worlds in these sets. The difference between K and A lies in the restrictions
about which worlds belong to WK and WA, respectively.

To see this difference, consider the knowledge bases KB = {∃ r.C(a)},KBK =
{∃ r.KC(a)} and KBA = {∃ r.AC(a)}. The set of all first-order models of KB ,
denoted by M(KB), can be verified to be the unique epistemic model for KB .
However, M(KB) is not an epistemic model for KBK, since it contains first-order
interpretations in which the r-successors of a do not constantly belong to C over
all J ∈ M(KB). The use of the K-operator in KBK requires the existence of an r-
successor for a which belongs to C in all possible worlds, i.e. which is known to be
in the extension of C. The set Mx ⊂ M(KB), defined by {I : I |= r(a, x)∧C(x)}
for some x ∈ ∆I , fulfils this condition. It is an epistemic model for KBK, since
the epistemic interpretation (I,Mx,Mx) satisfies the axiom in KBK whereas
(I,Mx ∪ {I ′},Mx) does not, for any I ′ ∈ M(KB)\Mx

1. In this sense K can
be paraphrased as “known”.

Conversely, neither any Mx nor any other set of first order interpretations
is an epistemic model for KBA, which is unsatisfiable. To see this, consider any
set M of first-order interpretations for which (I,M,M) satisfies KBA. To verify
M as being maximal, (I,M′,M) must not satisfy KBA for any set M′ ⊃ M.
However, the choice of M′ does not affect the modality A. The set M could
only be an epistemic model if it would already be maximal, such that there is
no set M′. In this sense, the use of the A-operator in KBA refers to individuals
that are assumed to be in the extension of C already, and A can therefore be
paraphrased as “assumed”. If this assumption is not justified by other facts then
the knowledge base becomes unsatisfiable.

3 Realising Local Closed World Reasoning

In this section we show how LCW reasoning can be realised with the epistemic
operators K and A. We distinguish cases in which epistemic operators are used
inside the knowledge base from those in which they are used outside only.

If a non-epistemic knowledge base KB is queried by use of epistemic concepts,
we only have occurrences of epistemic operators outside KB . In this case they

1 Since we did not use ∃ Kr.KC(a) in KBK, there are even epistemic models Mσ =
{I : I |=

∨
x∈σ

r(a, x) ∧
∧

x∈σ
C(x)} for any subset σ ⊂ ∆I

Closed World Reasoning in the Semantic Web through Epistemic Operators 5

don’t affect the epistemic models of KB , since a non-epistemic knowledge base
always has a unique epistemic model M(KB) [3], which is just the set of all
its first-order models. In the more general case, epistemic operators can also
occur in the axioms of a knowledge base. Then the epistemic models of such a
knowledge base are determined by its epistemic axioms.

Epistemic Queries

To query a knowledge base KB means to ask for those individuals that have
certain properties specified by a concept. Therefore a query is often defined as a
concept C and querying reduces to checking the entailment of concept assertions
C(ι) for all known individuals ι in KB . We will consider the single case of checking
the entailment KB |= C(a) for a certain individual a.

In this sense, an epistemic query is an epistemic concept C that is posed
as a query to a non-epistemic knowledge base KB . To validate the entailment
KB |= C(a), the assertion C(a) has to be satisfied by epistemic interpreta-
tions (I,M,M) for any epistemic model M of KB . However, since KB is non-
epistemic, it is sufficient to consider the set M(KB) of its first-order models.

To see how the K-operator 2 affects the querying abilities for knowledge
bases, we investigate the model-theoretic situation for the following example of
an epistemic query, inspired by the popular pizza scenario from [9].

KB = { topping(pizza, tomato), topping(pizza, chili), ¬SpicyTopping(tomato) }

Q1 : KB 6|= { ∀ topping.¬SpicyTopping(pizza) }
Q2 : KB |= { ∀ Ktopping.¬KSpicyTopping(pizza) }

The pizza in KB has assigned two toppings, of which only tomato is declared
as non-spicy whereas for chili there is no such information. The queries Q1

and Q2 ask whether pizza has non-spicy toppings in two different ways. Query
Q1 is asking whether all toppings of pizza are non-spicy, using ‘ordinary’ DL
constructs. However, this is not entailed by KB for two reasons: a) it is not sure
whether pizza has any toppings other than the ones asserted in KB , and b) for
the chili topping it is not clear whether it is spicy or not.

Query Q2 is asking whether all known toppings of pizza are not known to be
spicy, using the K-operator. Since for neither tomato nor chili there is evidence
to conclude that they are spicy, we would expect the answer to be positive. To
verify the entailment for Q2 we have to check whether the epistemic interpreta-
tion (I,M(KB),M(KB)) satisfies the concept assertion in Q2 for all first-order
models I ∈ M(KB). The epistemic role Ktopping is interpreted as the inter-
section of pairs of individuals in topping over all first-order models of M(KB).
This eliminates those pairs which sometimes belong to the role extension and
sometimes not, leaving only topping(pizza, tomato) and topping(pizza, chili).
Analogously, for the epistemic concept KSpicyTopping those individuals are
eliminated that sometimes belong to the concept SpicyTopping and sometimes

2 Observe that Outside the knowledge base the two operators K and A show the same
behaviour [3]. Therefore we use only K in epistemic queries.

6 Stephan Grimm and Boris Motik

not. Therefore the negated expression ¬KSpicyTopping refers to those toppings
for which it is not clear that they are spicy from the given knowledge, which
includes tomato and chili. Hence, Q2 is answered positively.

Here, LCW reasoning is realised by closing off the role topping and the con-
cept SpicyTopping, reducing the ‘don’t known’ answers in the reasoning. The
conjecture made is “if a pizza is not definitely known to have a spicy topping it
is assumed to be safe”.

Epistemic Axioms

An epistemic axiom, either inclusion or assertion, is an axiom that contains an
epistemic concept. If we allow epistemic axioms in a knowledge base KB , things
become trickier because KB potentially has several epistemic models which have
to be determined for reasoning. As some special cases of epistemic axioms we
look at default rules and integrity constraints.

Default Rules
A default rule according to [10] has the form α : β / γ and is read as “if α is true
and it is consistent to assume that β is true then conclude that γ is true”. In [3] it
has been shown that such a default rule can be formalised as the epistemic axiom
Kα ⊓ ¬A¬β ⊑ Kγ 3. We explain the default behaviour of this formalisation by
the following example of a knowledge base augmented by a default rule.

KB = { Pizza(margarita), P izza ⊓ ¬FlatDish(calzone) }
D = { KPizza ⊓ ¬A¬FlatDish ⊑ KFlatDish }

KB ∪ D |= { FlatDish(margarita), ¬FlatDish(calzone) }

Of the pizzas in the knowledge base KB , only for calzone it is known whether
it is a flat dish – for margarita there is no such information. The default rule in
D says that pizzas are typically flat dishes, unless specified otherwise. Included
in KB , we would intuitively like this default rule to be applied on the pizza
margarita, concluding that it is a flat dish, but not on the pizza calzone, since
it is already asserted to be no flat dish. We will verify these conclusions by
determining the epistemic models of KB .

To obtain candidates for epistemic models of KB ∪D, let M1 and M2

be two partitions for all first-order models M(KB) of KB , such that M1 =
{I ∈ M(KB) : I |= FlatDish(margarita)} and M2 = {I ∈ M(KB) : I |=
¬FlatDish(margarita)}. Interpretations I 6∈ M(KB) can be ruled out, since
they do not satisfy KB , and other candidate sets M12, containing interpreta-
tions from both M1 and M2, do not satisfy the inclusion axiom in D because
margarita is in

⋂
J∈M12

PizzaJ ,M12,M12 and not in
⋂

J∈M12
¬FlatDishJ ,M12,M12

but not in
⋂

J∈M12
FlatDishJ ,M12,M12 , making the inclusion false. We verify

that only M1 is an epistemic model of KB∪D using Table 1, which shows the
extensions of the epistemic concepts involved in the inclusion from D for differ-
ent epistemic interpretations. The epistemic interpretation (I,M1,M1) satisfies
KB ∪D, since the inclusion in D is true for both individuals: margarita is in

3 We exclude prerequisite-free defaults (no presence of α) and cases where α=⊤, see [3]

Closed World Reasoning in the Semantic Web through Epistemic Operators 7

I,M1,M1 I,M′
1,M1 I,M2,M2 I,M′

2,M2

KPizza {cal, mar} {cal, mar} {cal, mar} {cal, mar}
A¬FlatDish {cal} {cal} {cal, mar} {cal, mar}
KFlatDish {mar} {} {} {}

Table 1. Extensions of epistemic concepts in different epistemic interpretations

⋂
J∈M1

PizzaJ ,M1,M1 , not in
⋂

J∈M1
¬FlatDishJ ,M1,M1 and in

⋂
J∈M1

FlatDishJ ,M1,M1

, whereas calzone is not in
⋂

J∈M1
¬FlatDishJ ,M1,M1 . To check whether M1 is

indeed an epistemic model for KB∪D we need to verify its maximality. Let M′
1

:=
M1 ∪ I ′ for some I ′ ∈ M2. The epistemic interpretation (I,M′

1
,M1) does not

satisfy KB ∪D, since margarita is still not in
⋂

J∈M1
¬FlatDishJ ,M′

1
,M1 , as

before, but not in
⋂

J∈M′

1

FlatDishJ ,M′

1
,M1 , contradicting the inclusion.

If we check whether M2 is also an epistemic model of KB ∪D, we observe
that (I,M2,M2) does also satisfy the axioms in KB ∪D. However, M2 does
not fulfil the maximality condition: if we consider the set M′

2
:= M2 ∪ {I ′},

for some I ′ ∈ M1, then (I,M′
2
,M2) does not contradict the inclusion because

margarita is in ¬FlatDishI,M′

2
,M2 for all J∈M2.

Having determined M1 as the only epistemic model of KB∪D, it can be seen
that the inferences given above are correct, since in M1 margarita is always a
flat dish whereas calzone never is.

From this example it can be seen that default rules can be used to reduce
don’t know answers in reasoning by eliminating those epistemic models which
contain uncertainty about a particular property.

Integrity Constraints
The concept of integrity constraint is known from the field of databases. An
integrity constraint is used to check the state of a knowledge base without de-
riving new facts – something that cannot be done in OWL. In [3] it has been
shown that ADLs are well suited to formalise integrity constraints due to their
introspective nature. We describe this formalisation by the following example.

KB = { KPizza ⊑ A∃ topping.⊤, P izza(pizzabread) }

The integrity constraint in KB says that any individual that is known to be a
pizza is also assumed to have some topping. We verify that KB has no epistemic
model due to the fact that pizzabread has no asserted topping.

Again, we consider a set of first-order interpretations M1 = {I : I |=
Pizza(pizzabread) ∧ ∃ topping.⊤(pizzabread)}. The epistemic interpretation
(I,M1,M1) satisfies KB , since pizzabread is in PizzaJ ,M1,M1 and also in
∃ topping.⊤J ,M1,M1 for all J ∈ M1. However, for any set M′

1
⊃ M1 the

epistemic interpretation (I,M′
1
,M1) also satisfies KB , since pizzabread is still

in ∃ topping.⊤J ,M′

1
,M1 for all J ∈ M1. From the generality of the sets of

first-order models we have chosen, it can be concluded that KB is unsatisfiable.
From this example, it can be seen that epistemic operators in DL can be

used to realise integrity constraints as epistemic axioms inside the knowledge
base. By identifying known individuals and posing assumptions on them, those
epistemic models are ruled out in which the assumptions are violated.

8 Stephan Grimm and Boris Motik

4 Applying Local Closed World Reasoning

The OWA has been criticised in various Semantic Web related settings, such as
natural language interfaces [6] or Semantic Web Service policies [11], description
[7] and discovery [5]. In this section we show by an example how LCW reasoning
can be applied in order to benefit from making conjectures in an open world
Semantic Web setting.

In our scenario, the pizza delivery services of Giovanni and Alberto allow to
order pizzas via the web. They use the vocabulary from a general pizza ontology
OPizza to describe the pizzas they offer through semantic annotations OGiovanni

and OAlberto in OWL as follows.

OPizza ⊇ { ∃ topping.⊤ ⊑ Pizza, Chili ⊑ ¬Mozarella ⊓ ¬Tomato ,

V esufo ⊑ SpicyDish ⊓ ∀ topping.¬Chili ,

Margarita ≡ ∃ topping.Tomato ⊓ ∃ topping.Mozarella ⊓ ∀ topping.(Tomato ⊔ Mozarella) }

OGiovanni ⊇ { ∃ topping.Chili(normalChili), ∃ topping.Chili ⊓ ¬SpicyDish(mildChili) }

OAlberto ⊇ { Margarita(margarita), V esufo(vesufo) }

The concept SpicyDish in OPizza is intended to indicate whether a pizza is spicy
or not. However, Giovanni and Alberto do not consequently use this concept to
classify all their pizzas – only some are explicitly said to be spicy or non-spicy.

Now consider a Semantic Web agent that is interested in non-spicy pizzas
only. Using the OWL concept ¬SpicyDish to query the annotations of Gio-
vanni and Alberto, this agent would only get the pizza mildChili as a result.
Intuitively, we would like the pizza margarita to also be in the result of the
query, since as humans we make conjectures such as “the toppings tomato and
mozarella typically don’t make a pizza spicy”. This more intuitive result can
not be achieved by just posing a closed world query, asking for all spicy pizzas
and inverting the result by taking all the others. In this case we would, besides
the pizzas margarita and mildChili, also get the pizza normalChili, which we
would intuitively conjecture to be typically spicy due to its chili topping.

In the following we show how the techniques for realising LCW reasoning from
Section 3 can be applied to include such conjectures in the querying process.

Applying Epistemic Queries

Epistemic queries provide a means to encode conjectures, like the ones made
above, directly into the query. In our example, the agent could pose an epistemic
query, asking for “pizzas that are either non-spicy or not known to be spicy but
known to have only non-chili toppings”. This would yield the intuitively desired
result from the annotations of Giovanni and Alberto as follows.

OPizza ∪ OGiovanni |= ¬SpicyDish ⊔ ¬KSpicyDish ⊓ K∀ topping.¬Chili(mildChili)

OPizza ∪ OAlberto |= ¬SpicyDish ⊔ ¬KSpicyDish ⊓ K∀ topping.¬Chili(margarita)

The epistemic query yields the pizzas mildChili, since it is declared as non-
spicy, and margarita, since it matches our conjecture.

In general, epistemic queries should be used to make conjectures on the side of
a Semantic Web agent, in settings where the original ontologies involved shall be
leaved untouched. In such a setting each agent can then make its own conjectures.

Closed World Reasoning in the Semantic Web through Epistemic Operators 9

Applying Default Rules

Default rules provide a means to incorporate conjectures into the domain knowl-
edge. In our example, the designers of the domain ontology OPizza could decide
to make the conjecture “pizzas with chili toppings are typically spicy, whereas
pizzas without chili toppings are typically non-spicy” part of the domain knowl-
edge for pizzas by means of the following default rules.

DPizza = { K∃ topping.Chili ⊓ ¬A¬SpicyDish ⊑ SpicyDish ,

K∀ topping.¬Chili ⊓ ¬ASpicyDish ⊑ ¬SpicyDish }

This allows our agent to draw some additional conclusions as follows.

OPizza ∪ DPizza ∪ OGiovanni ∪ OAlberto |=

{ SpicyDish(normalChili), ¬SpicyDish(margarita) }

In particular, this leaves no pizza for which it cannot be concluded whether it
is spicy or not. Therefore the agent can now safely use the non-epistemic query
concept ¬SpicyDish to ask for all the non-spicy pizzas.

In general, default rules should be used for including commonly agreed con-
jectures in the domain knowledge. This relieves the Semantic Web agent from
the burden of making conjectures itself.

Applying Integrity Constraints

So far, in our scenario, we derived additional conclusions, based on conjectures,
to deal with incomplete knowledge about the spiciness of pizzas in ontologies. An
alternative would be to not allow such incomplete information about spiciness,
and to force pizza delivery services to explicitly classify all their pizzas accord-
ingly. In our example, this can be achieved by including an integrity constraint
ICPizza requiring that any pizza is either assumed to be spicy or assumed to be
non-spicy, invalidating knowledge bases with non-classified pizzas.

ICPizza = { KPizza ⊑ (ASpicyDish ⊔ A¬SpicyDish) }

Both the pizzas normalChili and margarita fail to be determined as either
spicy or non-spicy, which is reflected by both OPizza ∪ ICPizza ∪OGiovanni and
OPizza ∪ ICPizza ∪ OAlberto being unsatisfiable.

In general, integrity constraints should be used in cases where conjectures
cannot be safely made on any side and where modelers should be forced to ex-
plicate certain information. Observe, that in OWL there is no way to express
such an integrity constraint allowing to detect the improper modelling in Gio-
vanni’s and Alberto’s ontologies.

5 Summary and Outlook

In this paper we have presented a case for extending OWL with non-monotonic
features by means of autoepistemic description logics [3]. In particular, we have

10 Stephan Grimm and Boris Motik

shown how local closed world reasoning is realised through the use of the epis-
temic operators K and A in formalising default rules, integrity constraints and
epistemic querying. Finally, we have demonstrated how such non-monotonic fea-
tures apply to making common sense conjectures for reasoning in a Semantic
Web scenario by extending the popular pizza example from [9].

Although [3] provides a good theoretical foundation, several issues need to be
addressed in order to achieve a true non-monotonic extension of OWL. Firstly,
in non-monotonic reasoning it is a common practice to assume unique name
assumption; however, such an assumption is not employed in OWL. Related to
that is the fact that in [3] the authors treat only ALC, which does not require
equality reasoning; on the contrary, OWL requires equality reasoning to imple-
ment number restrictions. Hence, we shall investigate the possibility of extending
ADLs to logics which use equality. Secondly, although [3] presents a tableaux
algorithm for reasoning in ADLs, it needs to be clarified whether this algorithm
can easily be extended to more expressive DLs like the ones current OWL rea-
soners can handle. Furthermore, the practicability of such algorithms needs to
be tested.

References

1. G. Antoniou. Nonmonotonic Reasoning. MIT Press, 1997.
2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.

The Description Logic Handbook. Cambridge University Press, January 2003.
3. F.M. Donini, D. Nardi, and R. Rosati. Description logics of minimal knowledge

and negation as failure. ACM Transactions on Computational Logic, 3(2):177–225,
2002.

4. O. Etzioni, K. Golden, and D. Weld. Tractable Closed World Reasoning with
Updates. In Proc. KR-2004, 1994.

5. S. Grimm, B. Motik, and C. Preist. Variance in e-business service discovery. In
Proc. 1st Intl. Workshop SWS’2004 at ISWC 2004, November 2004.

6. U. Hustadt. Do we need the closed-world assumption in knowledge representation.
In F. Baader, M. Buchheit, M. Jeusfeld, and W. Nutt, editors, Working Notes of the
KI’94 Workshop: Reasoning about Structured Objects: Knowledge Representation
Meets Databases (KRDB’94), volume D-94-11 of Document, pages 24–26. DFKI.

7. H. Lausen, J. de Bruijn, A. Polleres, and D. Fensel. Wsml - a language framework
for semantic web services. In W3C Rules Workshop, Washington DC, USA, April
2005.

8. P. F. Patel-Schneider, P. Hayes, I. Horrocks, and F. van Harmelen. OWL Web
Ontology Language; Semantics and Abstract Syntax, W3C Candidate Recommen-
dation. http://www.w3.org/TR/owl-semantics/, November 2002.

9. A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens,
H. Wang, and C. Wroe. Owl pizzas: Common errors & common patterns from
practical experience of teaching owl-dl. In Proc. of the Eleventh Intern. Conf. on
World Wide Web, pages 89–98, 2002.

10. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(81–132):219–221,
1980.

11. V. Kolovski and B. Parsia and Y. Katz and J.Hendler. Representing Web Service
Policies in OWL-DL. To appear in Proc. of the 4th Intern. Semantic Web Conf.
(ISWC), 2005.

