DIP
Data, Information and Process Integration with Semantic Web Services
FP6 - 507483

Deliverable

WP 15: Project Management
D15.11
<Risk Management Report>

Thomas Hadek
Ronald Hartwig
Klaus Niederacher
Alexander Wahler

December 22th 2004
EXECUTIVE SUMMARY

Target audience of this deliverable:

- The members of the Project Management Office and the Executive Project Management Board
- The responsible risk owners, as assigned in the risk management plan

Risk management can have an important impact on projects. Especially research projects suffer from an inherent uncertainty regarding a changing environment, unproven technological assumptions and different expectations by the stakeholders.

This deliverable describes how risk management is done in DIP. It is based on a best-practice model, successfully applied in former projects. It tries to meet the above mentioned special requirements, without adding too much overhead. It was also tested against real risks that already occurred (“partner leaves consortium”). The overall planning, the particular instruments and all necessary actions will be explained in detail and the DIP risk management plan will be developed step-by-step.

In DIP, the Project Management Office (PMO) is assigned to monitor and maintain the project risk management plan. Before, the PMO assigns a Task Force for risk identification to develop a plan that enables them to identify, assess, and quantify project risks and prepare a response to monitor them. All critical decisions are made by the Executive Project Management Board (EPMB).

The risk management process is broken down into the following steps:

- **Risk identification.** A task force identifies the main risks and creates a project risk list.
- **Qualitative risk analysis.** A task force assesses the importance of the identified risks and their probability of occurrence.
- **Risk Response Planning.** As soon as the risk analysis procedures are finished, the PMO determines the available options to respond to a risk. Our risk response planning assigns parties to take responsibility for each risk response. These “response owners” periodically report to the PMO on the effectiveness of the plan, any unanticipated effects, and any mid-course correction that the EPMB must take to mitigate the risk.
- **Risk monitoring and control.** The PMO determines contingency strategies and monitors the risks as the project matures, new risks occur, or anticipated risks disappear. Risk monitoring and control is an ongoing process for the whole lifetime of the project.

The final outcome of this process is the DIP Risk Management Plan, realised as a spreadsheet and attached to this deliverable. It contains all information about the DIP Risk Management at a glance and serves as a guideline to all actions concerning risk management.

This report primarily describes the process in detail. As a matter of this process, the risks identified in this report and their rating might change. The attached risk management plan as a summary of the risk management report will be reviewed bi-
monthly by the Work package Leaders and included in the EC Report by the Project Management Office.

Much of the methodology described in the plan has already been informally applied during the first year of the project. With this deliverable it becomes a formalised process.

Disclaimer: The DIP Consortium is proprietary. There is no warranty for the accuracy or completeness of the information, text, graphics, links or other items contained within this material. This document represents the common view of the consortium and does not necessarily reflect the view of the individual partners.
Document Information

<table>
<thead>
<tr>
<th>IST Project Number</th>
<th>FP6 – 507483</th>
<th>Acronym</th>
<th>DIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full title</td>
<td>Data, Information, and Process Integration with Semantic Web Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project URL</td>
<td>http://dip.semanticweb.org</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document URL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU Project officer</td>
<td>Brian Macklin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Deliverable

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.11</td>
<td>Risk Management Report</td>
</tr>
</tbody>
</table>

Work package

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Project Management</td>
</tr>
</tbody>
</table>

Date of delivery

<table>
<thead>
<tr>
<th>Contractual</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 12</td>
<td>15-Dec-04</td>
</tr>
</tbody>
</table>

Status

Version. 1.0

Nature

Prototype ☐ Report ☑ Dissemination ☐

Dissemination Level

Public ☐ Consortium ☑

Authors (Partner)

Thomas Hadek (Tiscali), Ronald Hartwig (Tiscali/NIWA), Klaus Niederacher (Tiscali/NIWA), Alexander Wahler (Tiscali/NIWA)

Responsible Author

Klaus Niederacher

Email

niederacher@niwa.at

Partner

Tiscali/NIWA

Phone

+43-1-3195843-12

Abstract (for dissemination)

Keywords

Risk Management Planning

Version Log

<table>
<thead>
<tr>
<th>Issue Date</th>
<th>Rev No.</th>
<th>Author</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-Jul-04</td>
<td>0.1</td>
<td>Klaus Niederacher</td>
<td>Initial release – concept of DIP Risk Management</td>
</tr>
<tr>
<td>15-Sep-04</td>
<td>0.5</td>
<td>Klaus Niederacher</td>
<td>Definition and classification of DIP Risk List</td>
</tr>
<tr>
<td>03-Dec-04</td>
<td>0.8</td>
<td>Klaus Niederacher</td>
<td>Final draft prepared for internal review – Risk Management Plan added</td>
</tr>
<tr>
<td>15-Dec-04</td>
<td>0.9</td>
<td>Klaus Niederacher</td>
<td>Comments of the reviewers included</td>
</tr>
<tr>
<td>22-Dec-04</td>
<td>1.0</td>
<td>Klaus Niederacher</td>
<td>Review passed – Deliverable version number changed to 1.0</td>
</tr>
</tbody>
</table>
Project Consortium Information

<table>
<thead>
<tr>
<th>Partner</th>
<th>Acronym</th>
<th>Contact</th>
</tr>
</thead>
</table>
| National University of Ireland Galway | NUIG | Prof. Dr. Christoph Bussler
Digital Enterprise Research Institute (DERI)
National University of Ireland, Galway
Galway
Ireland
Email: chris.bussler@deri.org
Tel: +353 91 512460 |
| Fundacion De La Innovacion.Bankinter | Bankinter | Monica Martínez Montes
Fundacion de la Innovacion. Bankinter
Paseo Castellana, 29
28046 Madrid, Spain
Email: mmntnez@bankinter.es
Tel: 916234238 |
| Berlecon Research GmbH | Berlecon | Dr. Thorsten Wichmann
Berlecon Research GmbH
Oranienburger Str. 32
10117 Berlin, Germany
Email: tw@berlecon.de
Tel: +49 30 2852960 |
| British Telecommunications Plc. | BT | Dr John Davies
BT Exact (Orion Floor 5 pp12)
Adastral Park Martlesham
Ipswich IP5 3RE, United Kingdom
Email: john.nj.davies@bt.com
Tel: +44 1473 609583 |
| Swiss Federal Institute of Technology, Lausanne | EPFL | Prof. Karl Aberer
Distributed Information Systems Laboratory
École Polytechnique Fédérale de Lausanne
Bât. PSE-A
1015 Lausanne, Switzerland
Email: Karl.Aberer@epfl.ch
Tel: +41 21 693 4679 |
| Essex County Council | Essex | Mary Rowatt,
Essex County Council
PO Box 11, County Hall, Duke Street
Chelmsford, Essex, CM1 1LX
United Kingdom.
Email: mary@essexcc.gov.uk
Tel: +44 (0)1245 436524 |
| Forschungszentrum Informatik | FZI | Andreas Abecker
Forschungszentrum Informatik
Haid-und-Neu Strasse 10-14
76131 Karlsruhe
Germany
Email: abecker@fzi.de
Tel: +49 721 9654 0 |
<table>
<thead>
<tr>
<th>Company</th>
<th>Contact Person</th>
<th>Address</th>
<th>Email</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institut für Informatik, Leopold-Franzens Universität Innsbruck</td>
<td>Prof. Dieter Fensel</td>
<td>Institute of computer science University of Innsbruck Technikerstr. 25 A-8020 Innsbruck, Austria</td>
<td>dieter.fensel@deri.org</td>
<td>+43 512 5076485</td>
</tr>
<tr>
<td>ILOG SA</td>
<td>Christian de Sainte Marie</td>
<td>9 Rue de Verdun, 94253 Gentilly, France</td>
<td>csma@ilog.fr</td>
<td>+33 1 49082981</td>
</tr>
<tr>
<td>inubit AG</td>
<td>Torsten Schmale</td>
<td>inubit AG Lützowstraße 105-106 D-10785 Berlin Germany</td>
<td>ts@inubit.com</td>
<td>+49 30726112 0</td>
</tr>
<tr>
<td>Intelligent Software Components, S.A.</td>
<td>Dr. V. Richard Benjamins</td>
<td>Intelligent Software Components, S.A. Pedro de Valdivia 10 28006 Madrid, Spain</td>
<td>rbenjamins@isoco.com</td>
<td>+34 913 349 797</td>
</tr>
<tr>
<td>The Open University</td>
<td>Dr. John Domingue</td>
<td>Knowledge Media Institute The Open University, Walton Hall Milton Keynes, MK7 6AA United Kingdom</td>
<td>jb.domingue@open.ac.uk</td>
<td>+44 1908 655014</td>
</tr>
<tr>
<td>SAP AG</td>
<td>Dr. Elmar Dorner</td>
<td>SAP Research, CEC Karlsruhe SAP AG Vincenz-Priessnitz-Str. 1 76131 Karlsruhe, Germany</td>
<td>elmar.dorner@sap.com</td>
<td>+49 721 6902 31</td>
</tr>
<tr>
<td>Sirma Al Ltd.</td>
<td>Atanas Kiryakov</td>
<td>Ontotext Lab, - Sirma AI EAD Office Express IT Centre, 3rd Floor 135 Tzarigradsko Chausse Sofia 1784, Bulgaria</td>
<td>atanas.kiryakov@eirma.bg</td>
<td>+359 2 9768 303</td>
</tr>
<tr>
<td>Tiscali Österreich GmbH</td>
<td>Dieter Haacker</td>
<td>Tiscali Österreich GmbH. Diefenbachgasse 35 A-1150 Vienna Austria</td>
<td>Dieter.Haacker@at.tiscali.com</td>
<td></td>
</tr>
</tbody>
</table>

Deliverable 15.11 v 23.12.2004
<table>
<thead>
<tr>
<th>Company</th>
<th>Contact Person</th>
<th>Address</th>
<th>Email</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicorn Solution Ltd.</td>
<td>Jeff Eisenberg</td>
<td>Unicorn Solutions Ltd., Malich Technology Park 1, Jerusalem 96951, Israel</td>
<td>Jeff.Eisenberg@unicorn.com</td>
<td>+972 2 6491111</td>
</tr>
<tr>
<td>Vrije Universiteit Brussel</td>
<td>Carlo Wouters</td>
<td>Vrije Universiteit Brussel, Pleinlaan 2, G-10, 1050 Brussel, Belgium</td>
<td>carlo.wouters@vub.ac.be</td>
<td>+32 (0) 2 629 3719</td>
</tr>
</tbody>
</table>
LIST OF KEY WORDS/ABBREVIATIONS

AB Advisory Board
EB Exploitation Board
EPMB Executive Project Management Board
PCR Project Change Request
PID Project Initiation Document (identical with DIP Annex-I)
PMO Project Management Office
PxI Probability and Impact
RAD Rapid Application Development
TPMB Technical Project Management Board
VA Value Analysis
WBS Work Breakdown Structure

Advisory Board
Board of external experts. Commissioned by the Executive Project Management Board to observe the State-of-the-Art environment, monitor risks and give profound advice.

Contingency Reserve
The amount of money or time needed above the estimate to reduce the risk of overruns of project objectives to a level acceptable to the organization.

Decision Tree
A diagram used to select the best course of action in uncertain situations.

Exploitation Board (EB)
Reports to the EPMB, and is concerned with all matters relating to exploitation of the results of the project, the management of the knowledge acquired in the course of the project, innovation aspects and intellectual property rights. It will in turn ensure that the project is kept aware of current market trends and developments which might have an impact on the project. The members of the EB will primarily be selected from the commercial partners, but with a representation from the research partners.

Executive Project Management Board (EPMB)
Responsible in DIP for the overall success of the project, and for ensuring that the project has an effective and achievable exploitation strategy. The EPMB will consist of the Core Partners, with the Project Manager present as a non-voting observer.

Impact
Effect or consequence.

Milestone
A significant event in the project, usually completion of a major deliverable.
Mitigation
The act of alleviating a harmful circumstance. Risk mitigation seeks to reduce the probability and/or impact of a risk to below an acceptable threshold.

Probability
Likelihood of the occurrence of any event.

Project Change Request
Any significant changes to the scope, cost, or schedule of the document of work.

Project Initiation Document
Concept approval document for candidate projects that contains:

- A defined project scope
- A reliable capital and support cost estimate for each alternative solution
- A project schedule (workplan) for the alternative recommended for programming the project

Project Management Office
Provides the necessary support for day-by-day project management and administration of the project. It reports to the Co-ordinator, and takes charge of supporting and providing assistance to the Co-ordinator and the EPMB in their day-to-day tasks. It is led by the Project Manager and will additionally comprise a Project Administrator and other support staff as necessary to fulfil its responsibilities, which will include production of non-technical reports (management, progress and financial reporting); maintaining consolidated records of costs, resources, and time-scales, ensuring the necessary infrastructure for intra-project communication, and operational liaison with the Commission.

Scope
Encompasses the work that must be done to deliver a product with the specified features and functions.

Technical Project Management Board
The technical supervisory body of the Project. It meets quarterly and reports to the EPMB, and has the responsibility for overall technical co-ordination of the project, inter-communication between the different workpackages, and ensuring the timely progress of the project and the high quality of the results. It will meet quarterly and will consist of the Project Manager and the designated Leaders of the workpackages.
Value Analysis
The Project Management Office systematically applies recognized techniques to:
- Identify the function of a product or service
- Establish a worth for that function
- Generate alternatives through the use of creative thinking
- Reliably provide the needed functions at the lowest overall cost

The term is often interchanged with Value Engineering.

Workplan
A resourced schedule – the workplan identifies the project-specific WBS elements and defines the cost, timeline, and requirements for each. The current workplan guides the day-to-day operations of project execution and project control and is derived from DIP Annex-I.
TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 1
LIST OF KEY WORDS/ABBREVIATIONS .. VII
TABLE OF CONTENTS .. X
1 INTRODUCTION .. 1
2 PROCESS OVERVIEW ... 2
3 RISK MANAGEMENT PLANNING .. 4
4 RISK IDENTIFICATION .. 4
5 QUALITATIVE RISK ANALYSIS ... 6
 5.1 Risk probability .. 6
 5.2 Impact Evaluation .. 7
 5.3 Probability and impact (PxI) matrix .. 9
6 QUANTITATIVE RISK ANALYSIS .. 16
7 RISK RESPONSE PLANNING .. 16
8 RISK MONITORING AND CONTROL .. 18
9 RISK MANAGEMENT PLAN .. 19
10 CONCLUSION .. 20

LIST OF FIGURES

Figure 1: Risk Management Process .. 3

LIST OF TABLES

Table 1: DIP risk list ... 5
Table 2: Typical risk ranking .. 6
Table 3: DIP risk ranking ... 7
Table 4: Impact definition ... 8
Table 5: DIP risk impact ... 8
Table 6: Translate score to risk rank .. 9
Table 7: Sample of a PxI matrix with given scores ... 10
Table 8: DIP risk strategy .. 10
Table 9: DIP risk strategy .. 17
Table 10: DIP contingency strategies .. 18
1 INTRODUCTION

Risk management can have an important impact to projects. Especially research projects suffer from an inherent uncertainty regarding a changing environment, un-proven technological assumptions and different expectations by the stakeholders.

A project risk is an uncertain event or condition that, if it occurs, has a positive or a negative effect on a project objective. A risk has a cause and, if it occurs, a consequence.

A risk is not a problem - a problem has already occurred; a risk is the possibility that a problem might occur. By recognizing potential problems, the project manager can attempt to avoid a problem through proper actions.

Risk management is the systematic process of planning for, identifying, analysing, responding to, and monitoring project risk. It involves processes, tools, and techniques that help the project manager maximize the probability and consequences of positive events and minimize the probability and consequences of adverse events. Project risk management is most effective when first performed early in the life of the project and is a continuing responsibility throughout the project.

Before risk planning is started, the project risk management infrastructure must be in place. Implementing this infrastructure takes time and is done before the project starts. If it happens at a later stage, the infrastructure will either be incomplete or the most critical time set aside for identifying risks to a project will be spent on infrastructure implementation.

Furthermore, it is critical for project risk management to be integrated into the project plan from the beginning, as it cannot be successful if it is treated or perceived as separate to the project.

Larger projects require more detailed risk planning due to the number and complexity of risks. This often includes the development of contingency strategies. The ranking and development of mitigation strategies may also require a larger scale of assignments for probability and/or impact (such as low, medium, high and very high).

The project risk management process helps the DIP Executive Project Management Board (EPMB) to make informed decisions regarding project alternatives. Risk management encourages the Project Management Office and the EPMB to take appropriate measures to minimize:

- Adverse impacts to project scope, cost, and schedule
- The necessity to change workplan or redefine project goals
- Management by crisis

In general this will cause a cultural shift from "fire-fighting" and "crisis management" to proactive decision making that avoids problems before they arise. Anticipating what might go wrong will become a part of everyday business, and the management of risks will be as integral in project management as other management tasks.

There are some situations where nothing can realistically be done to prevent or deal with a risk. The risk has to be “accepted”. In this case, the project must be managed in such a way that the probability of the event occurring is minimized. If the event does
occur, the project manager must re-plan the project and include the effect of the problem.

Many different risk management methodologies have been developed. The most common steps are identifying the risks, grading them and deciding what corrective actions have to be taken, should the worst happen. Most attention is given to the risks with a high probability and high to medium severity rating. No attempt should be made to identify all possible risks that might affect the project, but anything likely to occur should be included in the analysis.

In DIP, an adapted best practice approach was chosen. This approach meets the special requirements of the DIP project, like dealing with unproved cutting-edge technology and unpredictable market development, without adding too much overhead. The following chapters will explain the overall planning, the particular instruments and all necessary actions in detail and develop the DIP risk management plan step-by-step.

2 PROCESS OVERVIEW

In DIP, the Project Management Office (PMO) is assigned to monitor and maintain the project risk management plan. The PMO assigns a task force to develop a plan that enables them to identify, assess, quantify and prepare a response to monitor project risks.

The next step is risk identification. The task force identifies risks by using brainstorming methods, common risk taxonomies, and interviews and creates a project risk list. Then the task force assesses the importance of the identified risks and their probability of occurrence. This is done in a Qualitative Risk Analysis.

If the outcome of the Qualitative Risk Analysis is insufficient and/or it makes sense to gather more accurate data in an efficient way, the PMO can hire an external expert to gather additional numerical estimates of frequency, probability, and consequences of the risks (Quantitative Risk Analysis). However, the DIP project in its nature as a highly innovative R&D project in the semantic web area makes it impossible to gain the needed data to calculate quantitative risks, so this step is skipped.

As soon as the risk analysis procedures are finished, the PMO determines the available options to respond to a risk (avoiding, mitigating, accepting, and transferring). This step is called Risk Response Planning.

Finally, the PMO determines contingency strategies for every defined risk and monitors the risks as the project matures, new risks occur, or anticipated risks disappear (Risk monitoring and control). This step is an ongoing process for the whole lifetime of the project: Every two months the risk management plan is reviewed by the Work Package Leaders and included in the regular EC report by the Project Management Office.
Figure 1: Risk Management Process below shows the process flow of the DIP Risk Management:

- **Risk Management Planning**
 - The PMO members assign project team members to create a project risk management plan.

- **Risk Identification**
 - The assigned project team members identify risks and create a project risk list through brainstorming, interviews, and sample risk lists.

- **Qualitative Risk Analysis**
 - The assigned project team members assess the importance of the identified risks and probability of occurrence.

- **Risk Response Plan**
 - For each identified risk, the PMO decides whether to avoid the risk, mitigate the risk, or accept the risk.

- **Risk Monitoring and Control**
 - Risk monitoring and control is an ongoing process for the life of the project. Assigned team members monitor the risks as the project matures, new risks develop, or anticipated risks disappear.

- **Is Value Analysis required for the project?**
 - **YES**
 - **Quantitative Risk Analysis**
 - The PMO assisted by an expert incorporates numerical estimates of frequency or probability and consequence.
 - **NO or not possible**

Figure 1: Risk Management Process

Please note that the Quantitative Risk Analysis is an optional part of our selected best-practice model. As it is impossible in DIP to gain the needed data to calculate quantitative risks, we decided to skip this step (see also Chapter 6).
3 Risk Management Planning

The Project Management Office (PMO) assigns a task force for risk identification to create a project risk management plan. The task force creates the risk management plan that identifies and establishes the activities of risk management for the project.

To prepare the risk management plan, the assigned task force members use a spreadsheet that shows the risks and responses in an abbreviated form.

4 Risk Identification

The very first step is to brainstorm the risks involved in the project by using common risk taxonomies and interviews, and create an initial risk list. The risk list is reviewed by key members of the EPMB.

To identify the risks it is helpful to distinguish between “risk”, “normal practice” and “limitation” to avoid producing a risk list that is too long:

- **Risk**, by its definition, is “the potential exposure associated with unplanned events and/or scenarios affecting a project’s success to the extent that it could lead to a loss to the organisations involved, and/or inhibit or distract from the expected level of success of a project”.

- **Normal practice constitutes** “a risk that has been inherently accepted based on its inclusion in a formal process”, for example using rapid application development (RAD) to quickly develop an application. During RAD, a design might not work and a new design has to be developed. An incorrect design using RAD is therefore not considered as a risk but as part of the RAD process.

- **A limitation** is “a potential exposure that cannot be managed and has to be accepted”, for example, not having access to a sufficient number of software developers. If, for some reason, it is not possible to get more developers, the project manager must plan the project within this limitation. It is neither a risk, as it is a known fact, nor a potential event, as it is accepted.

Another point to be considered is to ensure that all risks are stated correctly. The format in which all risks are defined is “risk”, “cause”, and “effect”. It happens quite often that a risk is fragmented into several risks just because it has many causes, for example the risk of unclear user requirements could be caused either by the user not knowing what he or she wants or the project team not understanding what the user means or the use of an unproven method to capture user requirements. The effect in these scenarios will, however, be the same.

Finally, it is helpful to classify the risk according to a common classification system. This way we can ensure we don’t oversee a particular type of risk. The following types of risks were identified:

- **External risks** like political, social, legal, or technical changes can not be influenced and often hardly be predicted.

- **Financial risks** cover funding, budget, credit, and tax risks.
- **Strategic risks** cover risks regarding the overall organisation of the project, crisis management and the allocation of resources.

In DIP, the risk identification process was done according to the described guidelines. As a result we got the DIP risk list:

Table 1: DIP risk list

<table>
<thead>
<tr>
<th>Risk</th>
<th>Risk Type</th>
<th>Cause</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-of-the-art environment lost relevance</td>
<td>External</td>
<td>Rise of new, superior technologies make the semantic web obsolete</td>
<td>Failure of the project, expected goals cannot be met, lack of sustainability</td>
</tr>
<tr>
<td>Project objectives lost relevance</td>
<td>External</td>
<td>Breakthrough in Semantic Technology by another project or an industrial player</td>
<td>Failure of the project, expected goals cannot be met, lack of sustainability</td>
</tr>
<tr>
<td>Management / organisational overhead higher than anticipated due to unforeseen events</td>
<td>Operational, Financial</td>
<td>Higher communication efforts</td>
<td>Budget can’t be met deadlines cannot be met</td>
</tr>
<tr>
<td>Partner leaves consortium</td>
<td>Operational</td>
<td>change in partner’s strategic goals, partner disagrees with project development</td>
<td>Recalculation of the budget necessary, search for a substitute</td>
</tr>
<tr>
<td>Staffing and recruitment problems</td>
<td>Operational</td>
<td>Lack of qualified staff available, salary expectations can’t be met</td>
<td>Quality of project results is lower than expected</td>
</tr>
<tr>
<td>Key staff illness during critical project phase</td>
<td>Operational</td>
<td>External</td>
<td>deadlines cannot be met</td>
</tr>
<tr>
<td>Time for development is underestimated</td>
<td>Operational</td>
<td>Lack of project management, unexpected problems with new technologies</td>
<td>Time delays, deadlines cannot be met</td>
</tr>
<tr>
<td>Budget or Person Month for additional key skills needed</td>
<td>Operational, Financial</td>
<td>unexpected problems with new technologies</td>
<td>Budget can’t be met</td>
</tr>
<tr>
<td>Revision of workplan puts stability of project to a risk</td>
<td>Strategic</td>
<td>Diverse expectations within the consortium, project environment has changed</td>
<td>Time delays, deadlines cannot be met</td>
</tr>
<tr>
<td>Use cases not representative</td>
<td>Operational</td>
<td>Wrong assumptions</td>
<td>Quality of project results are lower than expected, deadlines cannot be met</td>
</tr>
<tr>
<td>Potential users / customers fail to understand the usability</td>
<td>Operational</td>
<td>Unclear user expectations; misunderstandings by project team, unproven method to capture user requirements</td>
<td>Quality of project results are lower than expected; Time delays, deadlines cannot be met</td>
</tr>
<tr>
<td>Conceptual failure of architecture</td>
<td>Strategic</td>
<td>project environment has changed, planning phase was too short, important aspects were neglected</td>
<td>Total failure of the project, expected goals cannot be met, lack of sustainability</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Software components fail or limited functionality</td>
<td>Operational</td>
<td>Lack of experience with certain software components, unexpected problems with new technologies</td>
<td>Quality of project results is lower than expected</td>
</tr>
<tr>
<td>Development based on new and unproved technology fails</td>
<td>Operational</td>
<td>unexpected problems with new technologies, project environment has changed</td>
<td>Total failure of the project, expected goals cannot be met, lack of sustainability</td>
</tr>
<tr>
<td>Decision in favour of standards with no promising future</td>
<td>External</td>
<td>project environment has changed, lack of/wrong industry partners</td>
<td>Total failure of the project, expected goals cannot be met; lack of sustainability</td>
</tr>
<tr>
<td>Technology changes require significant redesign</td>
<td>External</td>
<td>project environment has changed</td>
<td>Budget can’t be met, deadlines cannot be met</td>
</tr>
<tr>
<td>Tools cannot be used or integrated</td>
<td>Operational</td>
<td>unexpected problems with new technologies, lack of planning</td>
<td>Quality of project results is lower than expected, deadlines cannot be met</td>
</tr>
</tbody>
</table>

5 **QUALITATIVE RISK ANALYSIS**

Qualitative risk analysis assesses the importance of the identified risks. The probability of the occurrence of a risk as well as the severity of its impact is determined. Prioritised lists of these risks for further analysis or direct mitigation are developed.

5.1 Risk probability

Every risk is ranked to a specific risk rate which is expressed through a ranking number. The ranking numbers represent a specific risk rate given in table 1 below:

Table 2: Typical risk ranking

<table>
<thead>
<tr>
<th>Risk Probability Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranking</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Here is the resulting DIP risk ranking:

Table 3: DIP risk ranking

<table>
<thead>
<tr>
<th>Risk</th>
<th>Probability of Risk Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-of-the-art environment lost relevance</td>
<td>1</td>
</tr>
<tr>
<td>Project objectives lost relevance</td>
<td>1</td>
</tr>
<tr>
<td>Management / organisational overhead higher than anticipated due to unforeseen events</td>
<td>1</td>
</tr>
<tr>
<td>Partner leaves consortium</td>
<td>2</td>
</tr>
<tr>
<td>Staffing and recruitment problems</td>
<td>3</td>
</tr>
<tr>
<td>Key staff illness during critical project phase</td>
<td>3</td>
</tr>
<tr>
<td>Time for development is underestimated</td>
<td>3</td>
</tr>
<tr>
<td>Budget or Person Month for additional key skills needed</td>
<td>1</td>
</tr>
<tr>
<td>Revision of workplan puts stability of project to a risk</td>
<td>1</td>
</tr>
<tr>
<td>Use cases not representative</td>
<td>2</td>
</tr>
<tr>
<td>Potential users / customers fail to understand the usability</td>
<td>1</td>
</tr>
<tr>
<td>Conceptual failure of architecture</td>
<td>1</td>
</tr>
<tr>
<td>Software components fail or limited functionality</td>
<td>2</td>
</tr>
<tr>
<td>Development based on new and unproved technology fails</td>
<td>3</td>
</tr>
<tr>
<td>Decision in favour of standards with no promising future</td>
<td>3</td>
</tr>
<tr>
<td>Technology changes require significant redesign</td>
<td>3</td>
</tr>
<tr>
<td>Tools cannot be used or integrated</td>
<td>2</td>
</tr>
</tbody>
</table>

5.2 Impact Evaluation

The impact of a risk can be defined using the following table:
Applied to the DIP risk list, we get the impact of every risk:

Table 5: DIP risk impact

<table>
<thead>
<tr>
<th>Risk</th>
<th>Impact time</th>
<th>Impact cost</th>
<th>Impact scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-of-the-art environment lost relevance</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Project objectives lost relevance</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Management / organisational overhead higher than anticipated due to unforeseen events</td>
<td>8</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Partner leaves consortium</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Staffing and recruitment problems</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Key staff illness during critical project phase</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Time for development is underestimated</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Budget or Person Month for additional key skills needed</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Revision of workplan puts stability of project to a risk</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Use cases not representative</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Potential users / customers fail to understand the usability</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Conceptual failure of architecture</td>
<td>4</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Software components fail or limited functionality</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Development based on new and unproved technology fails</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Decision in favour of standards with no promising future</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Technology changes require significant redesign</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Tools cannot be used or integrated</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
5.3 Probability and impact (PxI) matrix

The PxI combines each risk’s probability and impact. These matrices show whether each risk is high, moderate, or low. The risks are displayed by high, moderate, and low groupings for each of the three objectives (time, cost, and scope). Risks that are moderate to high will be given special attention:

Table 6: Translate score to risk rank

<table>
<thead>
<tr>
<th>Score</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 6</td>
<td>Low</td>
</tr>
<tr>
<td>7 – 14</td>
<td>Moderate</td>
</tr>
<tr>
<td>15 – ++</td>
<td>High</td>
</tr>
</tbody>
</table>

According to the risk ranking table and the risk impact table shown above, the risks regarding cost, time, and scope are entered into the particular risk strategy tables for every particular risk.
Table 7: Sample of a PxI matrix with given scores

<table>
<thead>
<tr>
<th>Probability</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>40</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>24</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

Impact

Table 8: DIP risk strategy

Risk

<table>
<thead>
<tr>
<th>State-of-the-art environment lost relevance</th>
<th>Project objectives lost relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PxI matrix</td>
<td>PxI matrix</td>
</tr>
</tbody>
</table>

PxI matrix

Time, Cost, and Scope Objectives

<table>
<thead>
<tr>
<th>Probability</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>40</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>24</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

Impact
<table>
<thead>
<tr>
<th>Risk</th>
<th>Pxl matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management / organisational overhead higher than anticipated due to</td>
<td>Time, Cost, and Scope Objectives</td>
</tr>
<tr>
<td>unforeseen events</td>
<td>High Impact is critical</td>
</tr>
<tr>
<td>Probability</td>
<td>Scope</td>
</tr>
<tr>
<td>5</td>
<td>1 2 4 8 16</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 2 4 8 16</td>
</tr>
<tr>
<td>Impact</td>
<td></td>
</tr>
</tbody>
</table>

Partner leaves consortium	Time, Cost, and Scope Objectives		
High Impact is critical	Scope	Cost	Time
Probability	1 2 4 8 16		
5			
4			
3			
2			
1	1 2 4 8 16		
Impact			

<p>| Staffing and recruitment problems | Time, Cost, and Scope Objectives |
| High Impact is critical | Scope | Cost | Time |
| Probability | 1 2 4 8 16 |
| 5 | |
| 4 | |
| 3 | |
| 2 | 1 2 4 8 16 |
| 1 | |
| Impact | |</p>
<table>
<thead>
<tr>
<th>Risk</th>
<th>PXI matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key staff illness during critical project phase</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time, Cost, and Scope Objectives</td>
</tr>
<tr>
<td></td>
<td>High Impact is critical</td>
</tr>
<tr>
<td>Probability</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1 2 4 8 16</td>
</tr>
<tr>
<td>4</td>
<td>8 16</td>
</tr>
<tr>
<td>3</td>
<td>Scope</td>
</tr>
<tr>
<td>2</td>
<td>Cost</td>
</tr>
<tr>
<td>1</td>
<td>Time</td>
</tr>
<tr>
<td></td>
<td>Impact</td>
</tr>
<tr>
<td>Time for development is underestimated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time, Cost, and Scope Objectives</td>
</tr>
<tr>
<td></td>
<td>High Impact is critical</td>
</tr>
<tr>
<td>Probability</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1 2 4 8 16</td>
</tr>
<tr>
<td>4</td>
<td>8 16</td>
</tr>
<tr>
<td>3</td>
<td>Scope</td>
</tr>
<tr>
<td>2</td>
<td>Time</td>
</tr>
<tr>
<td>1</td>
<td>Cost</td>
</tr>
<tr>
<td></td>
<td>Impact</td>
</tr>
<tr>
<td>Budget or Person Month for additional key skills needed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time, Cost, and Scope Objectives</td>
</tr>
<tr>
<td></td>
<td>High Impact is critical</td>
</tr>
<tr>
<td>Probability</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1 2 4 8 16</td>
</tr>
<tr>
<td>4</td>
<td>8 16</td>
</tr>
<tr>
<td>3</td>
<td>Scope</td>
</tr>
<tr>
<td>2</td>
<td>Time</td>
</tr>
<tr>
<td>1</td>
<td>Cost</td>
</tr>
<tr>
<td></td>
<td>Impact</td>
</tr>
<tr>
<td>Risk</td>
<td>PxI matrix</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Revision of workplan puts stability of project to a risk</td>
<td>Time, Cost, and Scope Objectives</td>
</tr>
<tr>
<td></td>
<td>High Impact is critical</td>
</tr>
<tr>
<td>Probability</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cost</td>
</tr>
<tr>
<td>1 2 4 8 16</td>
<td></td>
</tr>
<tr>
<td>Impact</td>
<td></td>
</tr>
<tr>
<td>Use cases not representative</td>
<td>Time, Cost, and Scope Objectives</td>
</tr>
<tr>
<td></td>
<td>High Impact is critical</td>
</tr>
<tr>
<td>Probability</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cost</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Impact</td>
<td></td>
</tr>
<tr>
<td>Potential users / customers fail to understand the usability</td>
<td>Time, Cost, and Scope Objectives</td>
</tr>
<tr>
<td></td>
<td>High Impact is critical</td>
</tr>
<tr>
<td>Probability</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cost</td>
</tr>
<tr>
<td>1 2 4 8 16</td>
<td></td>
</tr>
<tr>
<td>Impact</td>
<td></td>
</tr>
<tr>
<td>Risk</td>
<td>Pxl matrix</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Conceptual failure of architecture</td>
<td></td>
</tr>
<tr>
<td>Software components fail or limited</td>
<td></td>
</tr>
<tr>
<td>functionality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk</td>
<td>PXI matrix</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>Decision of standards with no promising future</td>
<td>Time, Cost, and Scope Objectives
High Impact is critical</td>
</tr>
<tr>
<td>Probability</td>
<td>Impact</td>
</tr>
<tr>
<td>5</td>
<td>1 2 4 8 16</td>
</tr>
<tr>
<td>4</td>
<td>1 2 4 8 16</td>
</tr>
<tr>
<td>3</td>
<td>Cost Time Scope</td>
</tr>
<tr>
<td>2</td>
<td>Cost Time Scope</td>
</tr>
<tr>
<td>1</td>
<td>Cost Time Scope</td>
</tr>
</tbody>
</table>

Technology changes require significant redesign	**Time, Cost, and Scope Objectives** High Impact is critical
Probability	**Impact**
5	1 2 4 8 16
4	1 2 4 8 16
3	Time Cost Scope
2	Time Cost Scope
1	Time Cost Scope

Tools cannot be used or integrated	**Time, Cost, and Scope Objectives** High Impact is critical
Probability	**Impact**
5	1 2 4 8 16
4	1 2 4 8 16
3	Cost Time, Scope
2	Cost Time, Scope
1	Cost Time, Scope
As a result we see that

- Several risks are moderate in terms of time, cost, or scope.
- The risks “Use cases not representative”, “Conceptual failure of architecture”, and “Development based on new and unproved technology fails” are high in terms of scope.

These risks will be given special attention in the project and should be avoided.

6 Quantitative Risk Analysis

In general, Quantitative Risk Analysis incorporates numerical estimates of frequency or probability and consequence. In practice a sophisticated analysis of risk requires extensive data which are expensive to acquire or often unavailable. Fortunately few decisions require sophisticated quantification of both frequency and consequences.

The DIP project in its nature as a highly innovative R&D project in the semantic web area makes it impossible to gain the needed data to calculate quantitative risks. For this reason the comprehensive Qualitative Risk Analysis will be the only basis of the DIP Risk Management Report (see also Figure 1: Risk Management Process).

7 Risk Response Planning

Before deciding how to respond to a risk, the risk strategy must be determined. Typical strategies include avoidance, transfer, mitigation and acceptance of risk. If it is decided that a risk is going to be accepted, no further planning is required, thus saving time.

Our risk response planning assigns parties to take responsibility for each risk response. This process ensures that each risk requiring a response has an “owner”.

We identify which strategy is best for each risk - these strategies and actions include:

- **Avoidance.** The response owner changes the project plan to eliminate the risk or to protect the project objectives from its impact. The team might achieve this by changing scope, adding time, or adding resources (thus relaxing the so-called “triple constraint”). These changes may require a Project Change Request (PCR).

- **Transference.** The response owner transfers the financial impact of a risk by contracting out some aspect of the work. Transference reduces the risk only if the contractor is more capable of taking steps to reduce the risk and does so.

- **Mitigation.** The response owner seeks to reduce the probability or consequences of a risk event to an acceptable threshold. They accomplish this via many different means that are specific to the project and the risk. Mitigation steps, although costly and time consuming, may still be preferable to going forward with the unmitigated risk.
- **Acceptance.** The response owner decides to accept certain risks. They do not change the project plan to deal with a risk, or identify any response strategy other than agreeing to address the risk if and when it occurs.

Table 9: DIP risk strategy

<table>
<thead>
<tr>
<th>Risk</th>
<th>Strategy</th>
<th>Actions to implement the strategy</th>
<th>Response Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-of-the-art environment lost relevance</td>
<td>Avoidance</td>
<td>Close co-operation with Industrial partners, monitoring of co-existing research projects</td>
<td>AB</td>
</tr>
<tr>
<td>Project objectives lost relevance</td>
<td>Avoidance</td>
<td>Proper monitoring of technological progress</td>
<td>AB</td>
</tr>
<tr>
<td>Management / organisational overhead higher than anticipated due to unforeseen events</td>
<td>Avoidance</td>
<td>Reserved contingency budget and resources</td>
<td>PMO</td>
</tr>
<tr>
<td>Partner leaves consortium</td>
<td>Acceptance</td>
<td>N/A</td>
<td>EPMB</td>
</tr>
<tr>
<td>Staffing and recruitment problems</td>
<td>Acceptance</td>
<td>N/A</td>
<td>Partners</td>
</tr>
<tr>
<td>Key staff illness during critical project phase</td>
<td>Avoidance</td>
<td>Reserved contingency resources</td>
<td>PMO</td>
</tr>
<tr>
<td>Time for development is underestimated</td>
<td>Avoidance</td>
<td>Reserved contingency budget</td>
<td>PMO</td>
</tr>
<tr>
<td>Budget or Person Month for additional key skills needed</td>
<td>Avoidance</td>
<td>Reserved contingency resources</td>
<td>PMO</td>
</tr>
<tr>
<td>Revision of workplan puts stability of project to a risk</td>
<td>Mitigation</td>
<td>Proper monitoring, problem detection, corrective actions</td>
<td>EPMB</td>
</tr>
<tr>
<td>Use cases not representative</td>
<td>Avoidance</td>
<td>Close co-operation with Industrial partners</td>
<td>EB</td>
</tr>
<tr>
<td>Potential users / customers fail to understand the usability</td>
<td>Transference</td>
<td>Commissioning of Market research/studies and outsourcing of usability testing</td>
<td>EB</td>
</tr>
<tr>
<td>Conceptual failure of architecture</td>
<td>Avoidance</td>
<td>Review with Software Engineering Methods</td>
<td>EPMB</td>
</tr>
<tr>
<td>Software components fail or limited functionality</td>
<td>Mitigation</td>
<td>Adaptation of Prioritisation of Functionalities and Components to maximise output</td>
<td>TPMB</td>
</tr>
<tr>
<td>Development based on new and unproved technology fails</td>
<td>Avoidance</td>
<td>Review with Software Engineering Methods</td>
<td>TPMB</td>
</tr>
<tr>
<td>Decision in favour of standards with no promising future</td>
<td>Avoidance</td>
<td>Close co-operation with Industrial partners</td>
<td>EPMB</td>
</tr>
<tr>
<td>Technology changes require significant redesign</td>
<td>Acceptance</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Tools cannot be used or integrated</td>
<td>Avoidance</td>
<td>Review with Software Engineering Methods</td>
<td>TPMB</td>
</tr>
</tbody>
</table>
8 RISK MONITORING AND CONTROL

While risk response planning determines the options available to risk response, risk monitoring and control determines contingency strategies and keeps track of the identified risks, residual risks, and new risks. It also ensures the execution of risk response plans, and evaluates their effectiveness.

The contingency plan contains a set of well-defined actions to be taken if a risk occurs. For every risk we define a contingency strategy that can be executed when necessary:

Table 10: DIP contingency strategies

<table>
<thead>
<tr>
<th>Risk</th>
<th>Contingency Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-of-the-art environment lost relevance</td>
<td>Advisory Board continuously observates technical progress of competing technologies addressing the same problems. Guidance by neutral outside experts. AB changes the workplan, if necessary.</td>
</tr>
<tr>
<td>Project objectives lost relevance</td>
<td>Advisory Board periodically reviews the progress in the field of Semantic Web and changes the workplan, if necessary.</td>
</tr>
<tr>
<td>Management / organisational overhead higher than anticipated due to unforeseen events</td>
<td>Project board organization and checkpoints will monitor, detect problems early and take corrective action.</td>
</tr>
<tr>
<td>Partner leaves consortium</td>
<td>Consortium is of sufficient strength and diversity for other partners to replace if required.</td>
</tr>
<tr>
<td>Staffing and recruitment problems</td>
<td>DIP has a split partner concept which can be seen as a risk balancing to avoid dependencies. Every partner is responsible for their staffing and recruiting.</td>
</tr>
<tr>
<td>Key staff illness during critical project phase</td>
<td>Critical parts of project will be done by more than one partner.</td>
</tr>
<tr>
<td>Time for development is underestimated</td>
<td>Project checkpoints will monitor, detect problems early and take corrective action. Case studies can be re-timed and re-scoped to mitigate against delayed delivery of software.</td>
</tr>
<tr>
<td>Budget or Person Month for additional key skills needed</td>
<td>DIP will place in reserve a contingency budget on the order of 10 PM</td>
</tr>
<tr>
<td>Revision of workplan puts stability of project to a risk</td>
<td>Project board organization and checkpoints will monitor, detect problems early and take corrective action.</td>
</tr>
<tr>
<td>Use cases not representative</td>
<td>Close co-operation with Industrial partners, case studies can be re-timed and re-scoped to mitigate against delayed delivery of software.</td>
</tr>
<tr>
<td>Potential users / customers fail to understand the usability</td>
<td>Key efforts are being set up to define a market driven exploitation and deployment strategy. These activities will be informed by ongoing market and technology watch initiatives.</td>
</tr>
<tr>
<td>Conceptual failure of architecture</td>
<td>The software engineering process is an integral part of the development, architecture will be chosen in a way that it can react on change; several fallback variants of the architecture are taken in account.</td>
</tr>
</tbody>
</table>
Software components fail or limited functionality | The architecture provides a balanced design between existing tools and components to be developed, functionalities are ranked by priority

Development based on new and unproved technology fails | Architecture is flexible to react on change, particularly with respect to the following key components: Ontology, Web Services. Technology watch is a key project activity.

Decision of standards with no promising future | Acceptance by the Industry will be closely watched, close co-operation with Industrial partners, a person responsible for managing and watching standards is nominated

Technology changes require significant redesign | Architecture is flexible to react on change, particularly with respect to the following key components: Ontology, Web Services. Technology watch is a key project activity.

Tools cannot be used or integrated | Interoperability and architecture workpackage set up with specific responsibility in this area.

Having a plan to prevent a risk is not a guarantee that it will work. Preventing a risk is the proactive response, while contingency planning is the reactive response to a risk.

Risk is dynamic and needs to be monitored and controlled constantly. The list of project risks changes as the project matures, new risks occur, or anticipated risks disappear.

Periodic project risk reviews repeat the tasks of identification, analysis, and response planning. The Project Management Office regularly schedules project risk reviews, and ensures that project risk is an agenda item at all EPMB meetings. Risk ratings and prioritization commonly change during the project lifecycle.

If an unanticipated risk emerges, or a risk’s impact is greater than expected, the planned response may not be adequate. The project manager and the EPMB must perform additional response planning to control the risk.

Risk control involves:

- Choosing alternative response strategies
- Executing or re-defining contingency strategies
- Taking corrective actions
- Re-planning the project

The response owner assigned to each risk reports periodically to the Project Management Office on the effectiveness of the plan, any unanticipated effects, and any mid-course correction that the EPMB must take to mitigate the risk.

9 RISK MANAGEMENT PLAN

The DIP Risk Management Plan contains all information about the DIP Risk Management explained before at a glance and serves as a guideline to all actions concerning risk management. The Risk Management Plan is attached as an Excel Sheet and integrates all tables of this deliverable. (DIP_RiskManagementPlan.xls). It will be reviewed and, if necessary, updated every two months, before it is included in the regular EC Report.
10 Conclusion

The subject of this deliverable was to identify possible project risk, analyse them with regard of probability and impact, define responsible risk owners and contingency strategies in case any of the risks occurs. The basic processes of risk management were defined and assigned to the responsible stakeholders. The most important ones are the Project Management Office, the task force for risk identification, and the Executive Project Management Board.

The most important outcome of the analysis is that the risks “Use cases not representative”, “Conceptual failure of architecture”, and “Development based on new and unproved technology fails” are high in terms of scope. In addition, several risk are moderate in terms of time, cost, or scope. These risks will be given special attention in the project reviews and should be avoided.

The risk management plan contains all information about the DIP Risk Management at a glance and serves as a guideline to all actions concerning risk management. The risks identified in this report might change during time. This deliverable primarily describes the process of risk management in detail, and serves as a starting point regarding identification an classification of risks. The attached risk management plan will be reviewed bi-monthly and might be adapted.

The described risk management process has been applied from the beginning of the project in an informal way. With this deliverable it becomes a formalised process.